1. Физические основы классической механики

  2. Молекулярная физика. Термодинамика

  3. Электростатика. Постоянный электрический ток

  4. Электромагнетизм

  5. Оптика

  6. Элементы атомной физики и квантовой механики. Физика твёрдого тела


















Решебник Чертова А. Г. по физике для заочников

Контрольная работа 5. Оптика



Ва-
риант

Номера задач


  0  
  1  
  2  
  3  
  4  
  5  
  6  
  7  
  8  
  9  

  510  
  501  
  502  
  503  
  504  
  505  
  506  
  507  
  508  
  509  
  520  
  511  
  512  
  513  
  514  
  515  
  516  
  517  
  518  
  519  
  530  
  521  
  522  
  523  
  524  
  525  
  526  
  527  
  528  
  529  
  540  
  531  
  532  
  533  
  534  
  535  
  536  
  537  
  538  
  539  
  550  
  541  
  542  
  543  
  544  
  545  
  546  
  547  
  548  
  549  
  560  
  551  
  552  
  553  
  554  
  555  
  556  
  557  
  558  
  559  
  570  
  561  
  562  
  563  
  564  
  565  
  566  
  567  
  568  
  569  
  580  
  571  
  572  
  573  
  574  
  575  
  576  
  577  
  578  
  579  



501
Между стеклянной пластиной и лежащей не ней плосковыпуклой линзой находится жидкость. Найти показатель преломления жидкости, если радиус r3 третьего темного кольца Ньютона при наблюдении в отраженном свете с длиной волны λ=0,6 мкм равен 0,82 мм. Радиус кривизны линзы R=0,5 м.

502
На тонкую пленку в направлении нормали к её поверхности падает монохроматический свет с длиной волны η =500 нм. Отраженный от неё свет максимально усилен вследствие интерференции. Определить минимальную толщину dmin пленки, если показатель преломления материала пленки n = 1,4.

503
Расстояние L от щелей до экрана в опыте Юнга равно 1 м. Определить расстояние между щелями, если на отрезке длиной l = 1см укладывается N=10 темных интерференционных полос. Длина волны λ= 0,7 мкм.

504
На стеклянную пластину положена выпуклой стороной плосковыпуклая линза. Сверху линза освещена монохроматическим светом длиной волны λ = 500 нм. Найти радиус R линзы, если радиус четвертого, тёмного кольца Ньютона в отраженном свете r4 = 2 мм.

505
На тонкую глицериновую пленку толщиной d= 1,5 мкм нормально к её поверхности падает белый свет. Определить длины волн λ лучей видимого участка спектра (0,4 < λ < 0,8 мкм), которые будут ослаблены в результате интерференции.

506
На стеклянную пластину нанесен тонкий слой прозрачного вещества с показателем преломления n=1,3. Пластина освещена параллельным пучком монохроматического света с длиной волны λ=640 нм, падающий на пластину нормально. Какую минимальную толщину dmin должен иметь слой, чтобы отраженный пучок имел наименьшую яркость?

507
На тонкий стеклянный клин падает нормально параллельный пучок света с длиной волны λ= 500 нм. Расстояние между соседними темными интерференционными полосами в отраженном свете b = 0,5 мм. Определить угол α между поверхностями клина. Показатель преломления стекла, из которого изготовлен клин, n = 1,6.

508
Плосковыпуклая стеклянная линза с f = 1 м лежит выпуклой стороной на стеклянной пластинке. Радиус пятого темного кольца Ньютона в отраженном свете r5= 1,1 мм. Определить длину волны λ.

509
Между двумя плоскопараллельными пластинами на расстоянии L= 10 см от границы их соприкосновения находится проволока диаметром d=0,01 мм, образуя воздушный клин. Пластины освещаются нормально падающим монохроматическим светом (λ=0,6 мкм). Определить ширину b интерференционных полос, наблюдаемых в отраженном свете.

510
Установка для наблюдения колец Ньютона освещается нормально падающим монохроматическим светом (λ=590 нм). Радиус кривизны R линзы равен 5 см. Определить толщину d3 воздушного промежутка в том месте, где в отраженном свете наблюдается третье светлое кольцо.

511
Какое наименьшее число Nmin штрихов должна содержать дифракционная решетка, чтобы в спектре второго порядка можно было видеть раздельно две желтые линии натрия с длинами волн λ1=589,0 нм и λ2=589,6 нм? Какова длина l такой решетки, если постоянная решетки d=5мкм?

512
На поверхность дифракционной решетки нормально падает монохроматический свет. Постоянная дифракционной решетки в n = 4,6 раз больше длины световой волны. Найти общее число М дифракционных максимумов, которые теоретически можно наблюдать в данном случае.

513
На дифракционную решетку падает нормально параллельный пучок белого света. Спектры третьего и четверного порядка частично накладываются друг на друга. На какую длину волны в спектре четвертого порядка накладывается граница (λ=780 нм) спектра третьего порядка?

514
На дифракционную решетку, содержащую n=600 штрихов на миллиметр, падает нормально белый свет. Спектр проецируется помещенной вблизи решетки линзой на экран. Определить длину l спектра первого порядка на экране, если расстояние от линзы до экрана L= 1,2 м. Границы видимого спектра: λ кр = 780 нм, λ ф = 400 нм.

515
На грань кристалла каменной соли падает параллельный пучок рентгеновского излучения. Расстояние d между атомными плоскостями равно 280 пм. Под углом θ=65o к атомной плоскости наблюдается дифракционный максимум первого порядка. Определить длину волны λ рентгеновского излучения.

516
На непрозрачную пластину с узкой щелью падает нормально плоская монохроматическая световая волна ( λ = 600 нм). Угол отклонения лучей, соответствующих второму дифракционному максимуму, φ = 20o. Определить ширину а щели.

517
На дифракционную решетку, содержащую n = 100 штрихов на 1 мм, нормально падает монохроматический свет. Зрительная труба спектрометра наведена на максимум второго порядка. Чтобы навести трубу на другой максимум того же порядка, её нужно повернуть на угол Δφ= 16o. Определить длину волны λ света, падающего на решетку.

518
На дифракционную решетку падает нормально монохроматический свет (λ=410 нм). Угол Δφ между направлениями на максимумы первого и второго порядков равен 2o21'. Определить число n штрихов на 1 мм дифракционной решетки.

519
Постоянная дифракционной решетки в n = 4 раза больше длины световой волны монохроматического света, нормально падающего на её поверхность. Определить угол α между первыми симметричными дифракционными максимумами.

520
Расстояние между штрихами дифракционной решетки d=4 мкм. На решетку падает нормально свет с длиной волны λ=0,58 мкм. Максимум какого наибольшего порядка дает эта решетка?

521
Пластинку кварца толщиной d= 2 мм поместили между параллельными николями, в результате чего плоскость поляризации монохроматического света повернулась на угол φ=53o. Какой наименьшей толщины dmin следует взять пластинку, чтобы поле зрения поляриметра стало совершенно темным?

522
Параллельный пучок света переходит из глицерина в стекло так, что пучок, отразившись от границы раздела этих сред, оказывается максимально поляризованным. Определить угол γ между падающим и преломленным пучками.

523
Кварцевую пластинку поместили между скрещенными николями. При какой наименьшей толщине dmin кварцевой пластины поле зрения между николями будет максимально просветленно? Постоянная вращения α кварца равна 27 град/мм.

524
При прохождении света через трубку длиной l1=20 см, содержащую раствор сахара концентрацией С1 = 10 %, плоскость поляризации света повернулась на угол φ1= 13,3o. В другом растворе сахара, налитом в трубку длиной l2=15 см, плоскость поляризации повернулась на угол φ2= 5,2o. Определить концентрацию С2 второго раствора.

525
Пучок света последовательно проходит через два николя, плоскости пропускания которых образуют между собой угол φ=40o. Принимая, что коэффициент поглощения k каждого николя равен 0,15, найти, во сколько раз пучок света, выходящий из второго николя, ослаблен по сравнению с пучком, падающим на первый николь.

526
Угол падения ε луча на поверхность стекла равен 60o. При этом отраженный пучок света оказался максимально поляризованным. Определить угол ε'2 преломления луча.

527
Угол α между плоскостями пропускания поляроидов равен 50o. Естественный свет, проходя через такую систему, ослабляется в n=8 раз. Пренебрегая потерей света при отражении, определить коэффициент поглощения k света в поляроидах.

528
Пучок света, идущий в стеклянном сосуде с глицерином, отражается от дна сосуда. При каком угле ε падения отраженный пучок света максимально поляризован?

529
Пучок света переходит из жидкости в стекло. Угол падения ε пучка равен 60o, угол преломления ε'2=50o. При каком угле падения εв пучок света, отраженный от границы раздела этих сред, будет максимально поляризован?

530
Пучок света падает на плоскопараллельную стеклянную пластину, нижняя поверхность которой находится в воде. При каком угле εB падения свет, отраженный от границы стекло-вода, будет максимально поляризован?

531
Частица движется со скоростью v=c/3, где с - скорость света в вакууме. Какую долю энергии покоя составляет кинетическая энергия частицы?

532
Протон с кинетической энергией Т= 3 ГэВ при торможении потерял треть этой энергии. Определить, во сколько раз изменился релятивистский импульс α-частицы.

533
При какой скорости β (в долях скорости света) релятивистская масса любой частицы вещества в n=3 раза больше массы покоя?

534
Определить отношение релятивистского импульса р - электрона с кинетической энергией Т= 1,53 МэВ к комптоновскому импульсу m0c электрона.

535
Скорость электрона v=0,8c (где с – скорость света в вакууме). Зная энергию покоя электрона в мегаэлектрон-вольтах, определить в тех же единицах кинетическую энергию Т электрона.

536
Протон имеет импульс р=469 МэВ/с. Какую кинетическую энергию необходимо дополнительно сообщить протону, чтобы его релятивистский импульс возрос вдвое?

537
Во сколько раз релятивистская масса m электрона, обладающего кинетической энергией Т=1,53 МэВ, больше массы покоя m0?

538
Какую скорость β (в долях скорости света) нужно сообщить частице, чтобы её кинетическая энергия была равна удвоенной энергии покоя?

539
Релятивистский электрон имел импульс р1=m0c. Определить конечный импульс этого электрона (в единицах m0c), если его энергия увеличилась в n= 2 раза.

540
Релятивистский протон обладал кинетической энергией, равной энергии покоя. Определить, во сколько раз возрастет его кинетическая энергия, если его импульс увеличится в n=2 раза.

541
Вычислить истинную температуру Т вольфрамовой раскаленной ленты, если радиационный пирометр показывает температуру Трад = 2,5 кК. Принять, что поглощательная способность для вольфрама не зависит от частоты излучения и равна аi=0,35.

542
Черное тело имеет температуру T1 = 500 К. Какова будет температура T2 тела, если в результате нагревания поток излучения увеличится в n = 5 раз?

543
Температура абсолютно черного тела Т= 2 кК. Определить длину волны λm, на которую приходится максимум энергии излучения, и спектральную плотность энергетической светимости (излучательности) (rλ,T)max для этой волны.

544
Определить температуру Т и энергетическую светимость (излучательность) Re абсолютно черного тела, если максимум энергии излучения приходится на длину волны λm=600 нм.

545
Из смотрового окошечка печи излучается поток Фе= 4 кДж/мин. Определить температуру Т печи, если площадь окошечка S = 8 см2.

546
Поток излучения абсолютно черного тела Фе = 10 кВт. Максимум энергии излучения приходится на длину волны λm = 0,8 мкм. Определить площадь S излучающей поверхности.

547
Как и во сколько раз изменится поток излучения абсолютно черного тела, если максимум энергии излучения переместится с красной границы видимого спектра m1 =780 нм) на фиолетовую m2 = 390 нм)?

548
Определить поглощательную способность аТ серого тела, для которого температура, измеренная радиационным пирометром, Трад=1,4 кК, тогда как истинная температура Т тела равна 3,2 кК.

549
Муфельная печь, потребляющая мощность Р = 1 кВт, имеет отверстие площадью S= 100 см2. Определить долю η мощности, рассеиваемой стенками печи, если температура её внутренней поверхности равна 1 кК.

550
Средняя энергетическая светимость R поверхности Земли равна 0,54 Дж/(см2•мин). Какова должна быть температура Т поверхности Земли, если условно считать, что она излучает как серое тело с коэффициентом черноты аТ = 0,25?

551
Красная граница фотоэффекта для цинка λ0 = 310 нм. Определить максимальную кинетическую энергию Тmax фотоэлектронов в электрон-вольтах, если на цинк падает свет с длиной волны λ = 200 нм.

552
На поверхность калия падает свет с длиной волны λ=150 нм. Определить максимальную кинетическую энергию Тmax фотоэлектронов.

553
Фотон с энергией ε= 10 эВ падает на серебряную пластину и вызывает фотоэффект. Определить импульс р, полученный пластиной, если принять, что направления движения фотона и фотоэлектрона лежат на одной прямой, перпендикулярной поверхности пластин.

554
На фотоэлемент с катодом из лития падает свет с длиной волны λ=200 нм. Найти наименьшее значение задерживающей разности потенциалов Umin, которую нужно приложить к фотоэлементу, чтобы прекратить фототок.

555
Какова должна быть длина волны γ-излучения, падающего на платиновую пластину, чтобы максимальная скорость фотоэлектронов была vmax = 3Мм/с?

556
На металлическую пластину направлен пучок ультрафиолетового излучения (λ = 0,25 мкм). Фототок прекращается при минимальной задерживающей разности потенциалов Umin = 0,96 В. Определить работу выхода А электронов из металла.

557
На поверхность металла падает монохроматический свет с длиной волны λ=0,1 мкм. Красная граница фотоэффекта λ0 = 0,3 мкм. Какая доля энергии фотона расходуется на сообщение электрону кинетической энергии?

558
На металл падает рентгеновское излучение с длиной волны λ= 1 нм. Пренебрегая работой выхода, определить максимальную скорость vmax фотоэлектронов.

559
На металлическую пластину направлен монохроматический пучок света с частотой ν=7,3·1014 Гц. Красная граница λ0 фотоэффекта для данного материала равна 560 нм. Определить максимальную скорость vmax фотоэлектронов.

560
На цинковую пластину направлен монохроматический пучок света. Фототок прекращается при задерживающей разности потенциалов U = 1,5 B. Определить длину волны λ света, падающего на пластину.

561
Фотон при эффекте Комптона на свободном электроне был рассеян на угол θ=π/2. Определить импульс р (в МэВ/с), приобретенный электроном, если энергия фотона до рассеяния была ε1 = 1,02 МэВ.

562
Рентгеновское излучение (λ= 1 нм) рассеивается электронами, которые можно считать практически свободным. Определить максимальную длину волны λmax рентгеновского излучения в рассеянном пучке.

563
Какая доля энергии фотона приходится при эффекте Комптона на электрон отдачи, если рассеяние фотона происходит на угол θ=π/2? Энергия фотона до рассеяния ε1=0,51 МэВ.

564
Определить максимальное изменение длины волны (Δλ)max при комптоновском рассеянии света на свободных электронах и свободных протонах.

565
Фотон с длиной волны λ1 = 15 пм рассеялся на свободном электроне. Длина волны рассеянного фотона λ2 = 16 пм. Определить угол θ рассеяния.

566
Фотон с энергией ε1 = 0,51 МэВ был рассеян при эффекте Комптона на свободном электроне на угол θ = 180o. Определить кинетическую энергию Т электрона отдачи.

567
В результате эффекта Комптона фотон с энергией ε1=1,02 МэВ рассеян на свободных электронах на угол θ=150o. Определить энергию ε2 рассеянного фотона.

568
Определить угол θ, на который был рассеян квант с энергией ε1 =1,53 МэВ при эффекте Комптона, если кинетическая энергия электрона отдачи Т=0,51 МэВ.

569
Фотон с энергией ε1=0,51 МэВ при рассеянии на свободном электроне потерял половину своей энергии. Определить угол рассеяния θ.

570
Определить импульс ре электрона отдачи, если фотон с энергией ε1 = 1,53 МэВ в результате рассеяния на свободном электроне потерял 1/3 своей энергии.

571
Определить энергетическую освещенность (облученность) Ее зеркальной поверхности, если давление р, производимое излучением, равно 40 мкПа. Излучение падает нормально к поверхности.

572
Давление р света с длиной волны λ=40 нм, падающего нормально на черную поверхность, равно 2 нПа. Определить число N фотонов, падающих за время t= 10 c на площадь S= 1 мм2 этой поверхности.

573
Определить коэффициент отражения ρ поверхности, если при энергетической освещенности Ее = 120 Вт/м2 давление р света на неё оказалось равным 0,5 мкПа.

574
Давление света, производимое на зеркальную поверхность, р=5 мПа. Определить концентрацию n0 фотонов вблизи поверхности, если длина волны света, падающего на поверхность, λ=0,5 мкм.

575
На расстоянии r = 5 м от точечного монохроматического (λ = 0,5 мкм) изотропного источника расположена площадка (S = 8 мм2) перпендикулярно падающим пучкам. Определить число N фотонов, ежесекундно падающих на площадку. Мощность излучения Р = 100 Вт.

576
На зеркальную поверхность под углом α=60o к нормали падает пучок монохроматического света (λ=590 нм). Плотность потока энергии светового пучка φ= 1 кВт/м2. Определить давление р, производимое светом на зеркальную поверхность.

577
Свет падает нормально на зеркальную поверхность, находящуюся на расстоянии r = 10 см от точечного изотропного излучателя. При какой мощности Р излучателя давление р на зеркальную поверхность будет равным 1 мПа?

578
Свет с длиной волны λ=600 нм нормально падает на зеркальную поверхность и производит на неё давление р = 4 мкПа. Определить число N фотонов, падающих за время t= 10 c на площадь S= 1 мм2 этой поверхности.

579
На зеркальную поверхность площадью S= 6 cм2 падает нормально поток излучения Фе=0,8 Вт. Определить давление р и силу давления F света на эту поверхность.

580
Точечный источник монохроматического (λ= 1 нм) излучения находится в центре сферической зачерненной колбы радиусом R =10 см. Определить световое давление р, производимое на внутреннюю поверхность колбы, если мощность источника Р= 1 кВт.



К. Р. 4               В начало               К. Р. 6





Ссылки                   Контакты