Алгебра и аналитическая геометрия


Решение задач по алгебре и геометрии предполагает изучение теоретического материала по следующим темам: Скалярные и векторные физические величины. Сила, перемещение, скорость, угловая скорость, момент.

Вектор

как направленный отрезок прямой. Коллинеарные и компланарные векторы. Нулевой вектор. Длина вектора. Равенство векторов. Элементарные операции над векторами: сложение векторов и умножение вектора на число. Свойства элементарных операций над векторами. Векторное пространство.
Линейная комбинация векторов. Линейно зависимые и линейно независимые системы векторов.

Базис на прямой,

базис на плоскости и базис в пространстве. Разложение вектора по базису. Координаты вектора.
Ортонормированный базис. Декартова прямоугольная система координат. Радиус вектор. Координаты точки. Столбец координат. Изоморфизм пространства радиус-векторов и векторов-столбцов их координат. Векторы размерности n. Арифметическое пространство.

Скалярное произведение векторов

Задачи по геометрии на свойства скалярного произведения. Проекция вектора. Выражение скалярного произведения через координаты векторов.
Правая и левая тройки векторов.

Векторное произведение векторов

Свойства векторного произведения. Площадь параллелограмма.

Смешанное произведение векторов

Свойства смешанного произведения векторов. Объем параллелепипеда. Двойное векторное произведение.

Определитель

второго и третьего порядков. Правило Саррюса. Свойства определителей. Выражение векторного произведения через координаты сомножителей. Выражение смешанного произведения через координаты сомножителей.

Уравнение прямой на плоскости и в пространстве.

Уравнение плоскости в пространстве. Расстояние от точки до плоскости. Взаимное расположение прямых и плоскостей.
Необходимо решить задачу по алгебре с использованием системы линейных уравнений. Правило Крамера.

Матрицы,

линейное пространство матриц порядка m?n. Квадратные матрицы. Нулевая и единичная матрицы. Перемножение матриц.
Миноры и алгебраические дополнения. Определители n-го порядка. Вычисление определителя разложением по строке (столбцу).

Ранг матрицы.

Невырожденная квадратная матрица. Понятие обратной матрицы. Вычисление обратной матрицы. Матричная запись системы линейных уравнений. Матричная запись решения системы n уравнений с n неизвестными.
Система m линейных уравнений с n неизвестными.

Метод Гаусса.

Теорема Кронекера-Капелли о существовании решения системы n уравнений с m неизвестными.

Система линейных уравнений.

Пространство решений. Размерность пространства решений. Общее решение однородной системы линейных уравнений.
Неоднородная система линейных уравнений. Общее решение неоднородной системы линейных уравнений.
Линейный оператор над векторным пространством и его матрица.

Собственные векторы

и собственные значения линейных операторов.
Преобразование поворота декартовой прямоугольной системы координат. Понятие вектора как инвариантного объекта.
Мнимая единица.

Комплексные числа.

Решение квадратных уравнений. Комплексные числа как пространство пар действительных чисел и как двумерное векторное пространство. Изображение комплексных чисел и линейные действия с ними. Модуль и аргумент комплексного числа. Тригонометрическая форма записи.
Перемножение комплексных чисел. Формулы Эйлера. Показательная форма комплексного числа. Деление комплексных чисел, извлечение корней. Действительное подпространство комплексных чисел.
Многочлен. Корень многочлена. Теорема Безу. Наличие действительного корня у многочлена с действительными коэффициентами нечетной степени. Сопряженные комплексные корни и разложение на линейные и квадратичные множители.

Основная теорема алгебры.

Деление многочленов. Дробная рациональная функция. Правильные и неправильные дроби. Выделение целой части из неправильной дроби. Простейшие дроби. Разложение дробной рациональной функции на простейшие дроби.
Эллипс, гипербола, парабола. Определение и геометрические свойства. Канонические и параметрические уравнения этих кривых. Траектории планет.
Поверхность вращения. Цилиндрические и конические поверхности. Канонические уравнения поверхностей второго порядка – сферы, эллипсоида, гиперболоидов, параболоидов, седловая точка. Конусы и цилиндры.

Полярная система координат на плоскости

.

Связь между координатами точки в полярной и декартовой системе координат.
Цилиндрическая и сферическая система координат в пространстве. Формулы связи между координатами.


Чтобы решить задачи необходимо иметь навыки по следующим темам:
  1. Векторы. Длина вектора. Координаты вектора. Направляющие косинусы. Сложение векторов и умножение вектора на число. Коллинеарные и компланарные векторы. Орт вектора.
  2. Линейная комбинация векторов. Линейно зависимые и линейно независимые системы векторов. Разложение вектора по базису.
  3. Линейное пространство. Базис и размерность линейного пространства.
  4. Определители второго и третьего порядков. Правило Саррюса. Свойства определителей.
  5. Скалярное произведение векторов. Векторное произведение векторов. Вычисление площади параллелограмма. Условие коллинеарности. Смешанное произведение векторов. Вычисление объёма параллелепипеда. Условие компланарности векторов.
  6. Уравнение прямой на плоскости.
  7. Уравнение плоскости и прямой в пространстве. Расстояние от точки до плоскости. Взаимное расположение прямых и плоскостей.
  8. Система линейных уравнений. Правило Крамера.
  9. Матрицы. Действия над матрицами. Умножение матриц. Транспонирование матриц. Ранг матрицы. Способы отыскания ранга матрицы.
  10. Миноры и алгебраические дополнения. Определители n-го порядка. Вычисление определителя разложением по строке (столбцу).
  11. Обратная матрица. Матричные уравнения. Решение систем линейных уравнений матричным методом.
  12. Условие совместности системы. Теорема Кронекера-Капелли. Решение системы линейных уравнений методом Гаусса.
  13. Общее решение однородной системы n уравнений с m неизвестными. Общее решение неоднородной системы n уравнений с m неизвестными.
  14. Линейный оператор и его матрица в данном базисе. Собственные векторы линейного оператора.
  15. Комплексные числа. Действия над комплексными числами. Решение квадратных уравнений. Модуль и аргумент комплексного числа. Тригонометрическая и показательная формы записи. Формулы Эйлера. Показательная форма комплексного числа. Формула Муавра.
  16. Многочлен. Корень многочлена. Теорема Безу. Наличие действительного корня у многочлена с действительными коэффициентами нечетной степени. Сопряженные комплексные корни и разложение на линейные и квадратичные множители. Основная теорема алгебры.






Ссылки                   Контакты