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FOREWORD

Science, in general, and physics, in particular, have evolved out of man’s quest to know beyond
unknowns. Matter, radiation and their mutual interactions are basically studied in physics.
Essentially, this is an experimental science. By observing appropriate phenomena in nature one
arrives at a set of rules which goes to establish some basic fundamental concepts. Entire physics
rests on them. Mere knowledge of them is however not enough. Ability to apply them to real
day-to-day problems is required. Prof. Irodov’s book contains one such set of numerical
exercises spread over a wide spectrum of physical disciplines. Some of the problems of the book
long appeared to be notorious to pose serious challenges to students as well as to their teachers.
This book by Prof. Singh on the solutions of problems of Irodav’s book, at the outset, seems
to remove the sense of awe which at one time prevailed. Traditionally a difficult exercise to
solve continues to draw the attention of concerned persons over a sufficiently long time. Once
a logical solution for it becomes available, the difficulties associated with its solutions are
forgotten very soon. This statement is not only valid for the solutions of simple physical problems
but also to various physical phenomena.

Nevertheless, Prof. Singh’s attempt to write a book of this magnitude deserves an all out
praise. His ways of solving problems are elegant, straight forward, simple and direct. By writing
this book he has definitely contributed to the cause of physics education. A word of advice to
its users is hoviever necessary. The solution to a particular problem as given in this book is
never to be consulted unless an all out effort in solving it independently has been already made.
Only by such judicious uses of this book one would be able to reap better benefits out of it.

As a teacher who has taught physics and who has been in touch with physics curricula
at L1.T., Delhi for over thirty years, I earnestly feel that this book will certainly be of benefit
to younger students in their formative years.

Dr. Dilip Kumar Roy
Professor of Physics

Indian Institute of Technology, Delhi
New Delhi-110016.



FOREWORD

A proper understanding of the physical laws and principles that govern nature require
solutions of related problems which exemplify the principle in question and leads to a
better grasp of the principles involved. It is only through experiments or through solutions
of multifarious problem-oriented questions can a student master the intricacies and fall
outs of a physical law. According to Ira M. Freeman, professor of physics of the state
university of new Jersy at Rutgers and author of ‘‘physic--principles and Insights’’ --
““In certain situations mathematical formulation actually promotes intuitive understand-
ing....... Sometimes a mathematical formulation is not feasible, so that ordinary language
must take the place of mathematics in both roles. However, Mathematics is far more
rigorous and its concepts more precise than those of language. Any science that is able
to make extensive use of mathematical symbolism and procedures is justly called an exact
science’’. LE. Irodov’s problems in General Physics fulfills such a need. This book
originally published in Russia contains about 1900 problems on mechanics, thermody-
namics, molecular physics, electrodynamics, waves and oscillations, optics, atomic and
nuclear physics. The book has survived the test of class room for many years as is evident
from its number of reprint editions, which have appeared since the first English edition
of 1981, including an Indian Edition at affordable price for Indian students.

Abhay Kumar Singh’s present book containing solutions to Dr. LE. Irodov’s Problems
in General Physics is a welcome attempt to develop a student’s problem solving skills.
The book should be very useful for the students studying a general course in physics and
also in developing their skills to answer questions normally encountered in national level
entrance examinations conducted each year by various bodies for admissions to profes-
sional colleges in science and technology.

B.P. PAL
Professor of Physics
LLT., Delln



Preface to the Second Edition

Perhaps nothing could be more gratifying for an author than seeing his
‘brainchild’ attain wide acclaim. Fortunately, it happes so with ‘Solutions to I. E.
Irodov’s Problems in General Physics (Volume-1I) authored by me. Since
inception, it showed signs of excellence amidst its ‘peer-group’, so much so that it
fell victim to Piracy-syndrome. The reported on rush of spurious copies of this
volume in the market accelerated the pace of our contemplation for this second
edition. Taking advantage of this occassion the book has almost been comptelely
vetted to cater to the needs of aspiring students.

My heart felt thanks are due to all those who have directly or indirectly
engineered the cause of its existing status in the book-world.

Patna
June 1997 Abhay Kumar Singh



Preface

This is the second volume of my “Solutions to LE. Irodov’s Problems in General
Physics.” It contains solutions to the last three chapters of the problem book ‘Problems
in General Physics’’. As in the first volume, in this second one also only standard
methods have been used to solve the problems, befitting the standard of the problems
solved.

Nothing succeeds like success, they say. From the way my earlier books have been
received by physics loving people all over the country, I can only hope that my present
attempt too will be appreciated and made use of at a large scale by the physics fraternity.

My special thanks are due to my teacher Dr. (Prof.) J. Thakur, Department of
Physics, Patna University, who has been my source of energy and inspiration throughout
the preparation of this book. I am also thankful to computer operator Mr. S. Shahab
Ahmad and artist Rajeshwar Prasad of my institute (Abhay’s L.I.T. Physics Teaching
Centre, Mahendru, Patna-6) for their pains-taking efforts. I am also than%“ful to all my
well-wishers, friends and family members for their emotional support.

Abhay Kumar Singh

Patna
July, 1996
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PART FOUR

OSCILLATIONS AND WAVES

4.1 MECHANICAL OSCILLATIONS

41 (a)
®)
4.2 (a)

Given, x = acos (mt—%)

. . t .o 2 L1
So, vx = x = —a wsin mt-z and w, = x = - a®" cos o)t--4—

&)

On-the basis of obtained expressions plots x (¢), v, (#) and w,(¢) can be drawn as

shown in the answersheet, (of the problem book ).
From Eqn (1)
Vy = -amsin(o)t—%) So, vi = azmzsinz(u)t-%)

But from the law x = acos (wt-n/4), so,x2 = azcosz(wt—n/4)

x2

or, cosz(mt-zt/4)--,\<2/a2 or sinz(mt--:n:/4)-1-—2
a

Using (3) in (2),

x
Vf = azu)z(l-;;) or vi = o)z(az-x2)

Again from Eqn (4),w, = —an’cos(wt-n/4) = - 0’x

From the motion law of the particle

X = asinz(mt-u/4) = % [1-cos(2mt-£)]

2
a a T a . a .
or, x-2-—2cos(2mt-2)--25m2mt-25m(2cot+n)
. a a .
ie. x-3 -2sm(2u)t+u).

Now compairing this equation with the general equation of harmonic oscillations :

X =Asin(oyt+a)

a

Amplitude, A = >

and angular frequency, @y = 2 w.

Thus the period of one full oscillation, T = 2z =z
Wo [0}

@

A

@

@



(b) Differentiating Eqn (1) w.r.t. time

vi=awcos (2wt+mx) or v,2(=a o? cos? Rowt+m)=a mz[l—sin2(2mt+n)] )]

2 2
From Eqn (1) (x-%) =%—sin2(2mt+n)
or, 4——+1—£=sin2(2cot+n) or 1—sin2(2mt+n)=4a—x(1—§) (3)

From Eqns (2) and (3), v, =d’? dx (1 - —-) =4w’x(a-x)
Plot of v, (x) is as shown in the answersheet.

4.3 Let the general equation of S.H.M. be

x=acos(wt+a) 1)
So, vy = —aosin(wt+a) 2)
Let us assume thatat ¢t = 0 , x = x5 and v, = Vi
Thus from Eqns (1) and (2) for = 0, xp = acosa, and v, = - awsina
v v
Therefore tana = - —~  and a = x(2,+ (—ﬁ) = 35.35 cm
W Xp «

Under our assumption Eqns (1) and (2) give the sought x and v, if

2 \/
t=t=240s, a = x(2)+(vx/<n‘ anda=wn'1(- ")=—E
o ) ® Xg 4

Putting all the given numerical values, we get :
x=-29cm and v, = - 81lcm/s

4.4 From the Eqn, v: = 0’ (a®-x%) (see Eqn. 4 of 4.1)
vi= w?(a®-x}) and vi = 0?(a*-x3)

Solving these Eqns simultaneously, we get

V- /(2-2) , 0=V (wd-vi)/(¥-vd)

4.5 (a) When a particle starts from an extreme position, it is useful to write the motion law as
X =acoswt @

(However x is the displacement from the equlibrium position)
It #; be the time to cover the distence a/2 then from (1)

1 n
a - =acoswit; or cosmtl=—=cos-3-(as t1<T/4)

2

N
[\SEESY

Thus === =



As X =acoswt, so,V, = —gamsinwt
Thus Va|v|=-v,=ansinwt, fortst, = T/6

Hence sought mean velocity

fvdt /6 . 3a
Ta -{a(Zn/T)smo)tdt/ /6 = == 05m/s

(b) In this case, it is easier to write the motion law in the form :

<V> =

x =asinwt )
If ¢, be the time to cover the distance a/2, then from Eqn (2)
. 2n . 2n 1 . X
a/2=asm712 or sinT" =5 =sing (ast,<T/4)
2 x T
Thus T'2-6 or,12-12

Differentiating Eqn (2) w.r.t time, we get

\ -awcoso)t-a—z—’—t-cosﬂt
x T T
So, v =|v,]| =a2—ucos2£t, for t< 1, = T/12
T T
Hence the sought mean velocity
Jva 1 TP ax g 6a
<V> = fdt - (T/IZ){ a——T—cos Ttdt-T- 1m/s
46 (a) Asx = asinwt S0, Vy=awcoswt
3r
8
famcos(Zu/T)tdt V3
0 2V2awm . 2x
Thus <,vx>-fv,dt/fdt= 9.1' - (usmg T = —c—o—)
8

(b) In accordance with the problem
— ~ —>
V=vi, 5o, |<v>|=]|<v,>|

2V2aw N 2V2aw
3n ¥ 1

Hence, using part (a), | <v’>| = l
(c) We have got, v, = awcoswt

So, v=|v,|=awcoswt, for ts 7/4

=-agwcoswt, for T/4st s %T



T/4 37/8
famcosmtdt+f—amcoswtdt

Hence <v> =.fv a -2 LA
’ fdt 37/8
Using w = 2x/T, and on evaluating the integral we get
24-V2)aw
<V>= ———————
3n

4.7 From the motion law, x = a cos w {,, it is obvious that the time taken to cover the distance
equal to the amplitude (a), starting from extreme position equals 7/4.
Now one can write

4 4
As the particle moves according to the law, x = acosw ¢,

t = nl+t0, where ¢, <Zand n = 0,1,2,...)

so at n = 1,3,5 ... or for odd n values it passes through the mean positon and for even
numbers of » it comes to an extreme position (if £, = 0).

Case (1) when n is an odd number :
In this case, from the equation

x = x asinw¢, if the t is counted from nT/4 and the distance covered in the time interval
. . T . nn
to becomes,s; = asinwfy = asinw t—nz = asin mt—T

Thus the sought distance covered for odd n is

2 2

Case (2), when n is even, In this case from the equation

. nn . niw
S=na+s; =na+asm|wt-— | =a|n+sm| wt-—7

x = acos w¢, the distance covered (s, ) in the interval f, is given by

4 2

nm
or, s2=a[1—cos(mt—7)]

Hence the sought distance for n is even

T T
A-5) = ACOsSWIy = acosw(t—-n—— =dacos|wt-n=

nw nn
Ss=na+s; = na+a[1—cos(mt—7)] = a[n+1—cos(mt—7)]

In general

n .
a[n+1—cos(u)t—7)}, n is even

n
. . nim
a[n+sxn(ut—7) ,

] n is odd



4.3

4.9

Obviously the motion law is of the from, x = asinwt and v, = wacoswt.
Comparing v, = wacos wt with v, = 35cos nt, we get

w-n,a-%f-,mus T=%"-2 and T/4 = 05s

Now we can write

t=28s= 5x-§-+0-3 (where %— = 0'58)

As n = 5 is odd, like (4-7), we have to basically find the distance covered by the particle
starting from the extreme position in the time interval 0-3 s.

Thus from the Eqn.

X =acoswt = %cosu(o-a)

35 35 35
5= Tcos:t(0-3) or 5 = — {1-cos03x}

Hence the sought distance

s = 5x£+§{l—cos0-3n}
non

= %%{6—cos0-3n}= %%x7(6—cos54°)- 60 em

As the motion is periodic the particle repeatedly passes through any given region in the range
—as xs a. The probability that it lies in the range (x, x + dx) is defined as the fraction

Ati (as ¢ — o) where A ¢ is the time that the particle lies in the range (x, x +d x) out of the

total time . Because of periodicity this is

dP dt 2dx
dP = o dx =T =37

where the factor 2 is needed to take account of the fact that the particle is in the range
(x, x +dx) during both up and down phases of its motion. Now in a harmonic oscillator.

Vv=x=wmacosot=woVad-x

Thus since @ T = 2x (T is the time period)

We get dP-%dx-%%
a -
+a dP
Note that f Ix dx =1
s0 ap N S - is properly normalized.
dx =n 2 2

a -x



6

4.10 (a) We take a graph paper and choose an axis (X - axis)

4.11

and an origin. Draw a vector of magnitude 3 inclined

n . .
at an angle 3 with the X -axis. Draw another vector ;7/3

of magnitude 8 inclined at an angle —g /3

(Since sin (w ¢+ 7/6) = cos (vt —n/3)) with the
X - axis. The magnitude of the resultant of both these
vectors (drawn from the origin) obtained using paral-
lelogram law is the resultant, amplitude.

Clearly R*=13%48% 4238 cos 23—“- 9 + 64 - 48 x %

=73 - 24 = 49
Thus R = 7 units

(b) One can follow the same graphical method here but the result can be obtained more
quickly by breaking into sines and cosines and adding :

Resultant x-(3+75_2—)cosmt+(6——\/5?)sinmt
=Acos(wt+a)
, 5.\ 5.\ 30 - 60
Then A -(3+—ﬁ) +(6_ﬁ) =94+25+ s + 36
=70-15V2 = 70-212
So, A = 6985 = 7 units

Note- In using graphical method convert all oscillations to either sines or cosines but do not
use both.

Given, x; = acoswt and x, = acosZwt
so, the net displacement,
X=x34x, =a{cosot+cos2wt } =a{coswt+20052wt—1}

and w=x=a{-osinot-4wcoswtsinwt}
For x to be maximum,
X =aw’coswt-dan’cos’wt+dan’sinfot =0
or, 8cos’wt+coswt—4 = 0, which is a quadratic equation for cos w t.

Solving for acceptable value
coswt = 0644
thus sinwt = 0-765
and Vmax = [ Vx| = +a®[0765 +4x 0765 x 0644 ] = +273 a »



4.12 We write :

acos21tcosS00¢t = % [cos52-1 t + cos 47-9t}

Thus the angular frequencies of constituent oscillations are

5215 ! and 479571

To get the beat period note that the variable amplitude acos2-1¢ becomes maximum
(positive or negative), when

21t =nn

Thus the interval between two maxima is

n
- 1:5 s nearly.

4.13 If the frequency of A with respect to K’ is v and K’ oscillates with frequency v with respect
to K, the beat frequency of the point A in the K-frame will be v when

V=vyzv

In the present case v = 20 or 24. This means

vo=22. &v =2

Thus beats of 2v = 4 will be heard when v = 26 or 18.

414 (a)

®)

From the Eqn : x = asinw¢t

2
sinfwt = ¥*/a> or cos’wt = l—i—f 1)

And from the equation : y=bcoswt
cos’wt = y*/b* )

From Egns (1) and (:2), we get :
2 2 2
1-"—z=12- oo L +La
a b a b
which is the standard equation of the ellipse shown in the figure.
we observe that,

at t=0,x=0 and y =b

and at t = x=4+a and y =0

20’
Thus we observe that at ¢ = 0, the point is at point 1 (Fig.) and at the following moments,
the co-ordinate y diminishes and x becomes positive. Consequently the motion is clock-
wise.

Asx = asinwt and y = becosw ¢t

. —> . > ~>
So we may write r = asinwt t+bcoswt j
, .. — 27—
Thus r = w = - 0°r



8

4.15 (a) From the Eqn. : x = asinw ¢, we have

4.16

4.17

coswt =V 1- (x2/a2)
and from the Eqn. :y = asin2 w¢t

2
=2asinwt coswt=2xV 1-(x2/a2) or y2 = 4x* (1-5-2-)

(b) From the Eqn. : x = asinw ’
sinwt = x*/a*
Fromy = acos2 wt
y = a(1—25in2mt) = a(l-Z:—i—)
For the plots see the plots of answersheet of the problem book.

AsU(x) = Uy(1-cosax)

au
So, F, -—E---ansmax
or, F, = - Ujaax (because for small angle of oscillations sin @ x = a x)
or, F, = - Uyd’x
But we know F, = - m m(z,x , for small oscillation

2 U002
Thus wp = — or Wy = a V

Hence the sought time period

2 E

o a a“ U,
“a b
IfU(x)=x2—x
then the equilibrium position is x = xo when U’ (x) =
or _2_a 2-0=>x =2_‘£
X% X °b
Now write : X =Xo+ Yy
Then U(x) = -———-+(x x) U (xg) +Z= (x xo) U'(xp)
xo Xo
" 6a 2b - 4
But U'(x) = —4-—5 = (2a/b) 2 (3b-2b) = b*/84°
Xo Xo

- 1{ 6* )2
So finally : U(x)=U(x0)+.i_ _8_.3 Y+
a

@)

M



4.18

4.19

9

We neglect remaining terms for small oscillations and compare with the P.E. for a harmonic,
oscillator : ’

-lmmzy2 1( L2 )yz SO ® L
- =>|— , - —2
2 2\8a V8aim

V8mad®

B2
Note : Equilibrium position is generally a minimum of the potential energy. Then
U (x5) = 0, U'(xp)>0. The equilibrium position can in principle be a maximum but then

Thus T=2nxn

U" (x) < 0 and the frequency of oscillations about this equilibrium position will be imaginary.
The answer given in the book is incorrect both numerically and dimensionally.

Let us locate and depict the forces acting on the ball at the position when it is at a distance
x down from the undeformed position of the string.

At this position, the unbalanced downward force on the ball
=mg-2Fsin0

By Newton’s law, mx =mg -2 Fsin 0

mg-2F0 (when Bis small)

= mg-2F—§—= mg-izx

72 l
v g AF. _ _4F( mgl
gt 20 mal
putting x' = x——m—i‘,’—'l , we get
. 47 ,
x'= -—x
ml
Thus T= 2 V2L = 025
7 .

Let us depict the forces acting on the oscillating ball at an
arbitraty angular position 6. (Fig.), relative to equilibrium
position where Fp is the force of buoyancy. For the ball
from the equation :

N; = IB;, (Where we have taken the positive sense of Z
axis in the direction of angular velocity i.e. 0 of the ball — — = —p— -~
and passes through the point of suspension of the — "~~~ — T
pendulum O ), we get :

—mglsin@+Fglsing = m?0 )

Using m = g-nrso, Fpg = %nrsp and sin 6 = 0 for small 0, in Eqn (1), we get :
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4.20

4.21

1
reza—t 2V L&
Vel 1--
l(l 0) M
Hence T =2a V —-B—-——l = 1-1s
g(n-1)

Obviously for small B the ball execute part of SH.M. Due to the perfectly elastic collision
the velocity of ball simply reversed. As the ball is in SHM. (6| < a on the left)its motion
law in differential from can be written as

é'--%e-—mﬁe ¢))

If we assume that the ball is released from the extreme position, 6 = f at ¢t = 0, the solution
of differential equation would be taken in the form

O-ﬁcosmot-ﬂcosV§ t (03]

If ¢’ be the time taken by the ball to go from the extreme position 6 = B to the wall i.c.
6 = - o, then Eqn. (2) can be rewritten as

- a = cos v %—t’
or t' V ! cosl[-2 V ! m-cos 1 Z
g B g B

. ' I -10Q

Thus the sought time T = 2¢' = 2 -g- 7 - Cos -B-

Il [ . 10 . -1 -1
=2 = | =+sin” "= |, because sin” "x+cos " x = /2
' (2 B) [ ]

Ilet the downward acceleration of the elevator car has continued for time ', then the sought
time

t = V % +1t', where obviously v —2;’-’- is the time of upward acceleration of the elevator.

One should r{ote that if the point of suspension of a mathematical pendulum moves with an
acceleration w , then the time period of the pendulum becomes

2n V L ( see 4.30)

| g-wl
In this problem the time period of the pendulum while it is moving upward with acceleration
w becomes



4.22

11

2n v ! and its time period while the elevator moves downward with the same

g+w
2V ——

magnitude of acceleration becomes
g-w

As the time of upward acceleration equals v 27” , the total number of oscillations during

this time equals

V2h/w
2V l/(g+w)

Thus the indicated time = 2h/w 2avVi/g =V2h/w 'V (g+w)/g

2aV i / (g+w)
Similarly the indicated time for the time interval ¢’

-t 2y l/g =t' V(g-w)/g
2aVIl/(g-w)
we demand that

V2h/w V(g+w)/g+t'V(g-w)/g =V2h/w+t’

or o v Yerw - Ve
\/E—Vg-w

Hence the sought time

If the hydromoter were in equlibrium or floating, its weight will be balanced by the buoyancy
force acting on it by the fluid. During its small oscillation, let us locate the hydrometer when
it is at a vertically downward distance x from its equilibrium position. Obviously the net
unbalanced force on the hycrometer is the excess buoyancy force directed upward and equals

nrix p g Hence for the hydrometer.

mx =-nrpgx
2
. xr
or, x =———7&g-x

Hence the sought time period

T=2a \/ n - 25s.
t

r’pg
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4.23

4.24

At first let us calculate the stiffness x; and x, of both the parts of the spring. If we subject
the original spring of stiffness k having the natural length /, (say), under the deforming forces
F - F (say) to elongate the spring by the amount x, then

’ F=xx 1)
Therefore the elongation per unit length of the spring is x/I; . Now let us subject one of the
parts of the spring of natural length m/; under the same deforming forces F — F. Then the
elongation of the spring will be

Fnly=nx
lo
Thus F = x; (mx) )
Hence from Eqns (1) and (2)
K = 1K, Of X; = x/7 3)
Similarly K2 = 12 n

The position of the block m when both the parts of the spring are non-deformed, is its
equilibrium position O. Let us displace the block m towards right or in positive x axis by
the small distance x. Let us depict the forces acting on the block when it is at a distance x
from its equilibrium position (Fig.). From the second law of motion in projection form i.e.
F,=mw,

K1 X-KyX = mX

or, —(-‘-(—+ K )x-m}c' /, K K = Kz2x K.
’ n l—n ! ’w( 2
Thus @ =-Xx 1 x y = e
mn(m) 0 «<xX—

Hence the sought time period
T=2aVn(l=m)m/x = 0-13s

Similar to the Soln of 4.23, the net unbalanced force on the block m when it is at a small
horizontal distance x from the equilibrium position becomes ( x; + x; ) x.
From F, = mw, for the block :

—(x +%3)x = mx

K; + X
Thus X = - (-—l———z)x
m
Hence the sought time period T = 2 n L
K1+ Ky

Alternate : Let us set the block m in motion to perform small oscillation. Let us locate the
block when it is at a distance x from its equilibrium position.

As the spring force is restoring conservative force and deformation of both the springs are
same, so from the conservation of mechanical energy of oscillation of the spring-block system :



4.25

4.26

4.27

13

dt 2 2

Differentiating with respect to time

2
}Z-m(d—x-) +lx1xz+lx2x2 = Constant

1 e 1 .
-2-m2xx +5(K1+K2)2xx =0

(x;+%x3)
- - ——x
m

Hence the sought time period T = 21:‘\/ i
X1 + X3

During the vertical oscillation let us locate the block at a vertical down distance x from its
equilibrium position. At this moment if x; and x, are the additional or further elongation
of the upper & lower springs relative to the equilibrium position, then the net unbalanced
force on the block will be x, x, directed in upward direction. Hence

-KyXy = mx 6))

or,

We also have X = X +X, )
As the springs are massless and initially the net force on the spring is also zero so for the
spring

K1 X = K3 Xp 3)
Solving the Eqns (1), (2) and (3) simultaneously, we get

K; K2 .o
X =mx

K; + Ky

(x; K2/K1+K2)x
m

, : AV LYY
Hence the sought time period T = 2x V m———

K K2

Thus x =

The force F, acting on the weighi deflected from the position of equilibrium is 2 T sin O.

Since the angle 0 is small, the net restoring force, F = 2 T, o?

2T
or, F = kx, where k=T° < 21

v

So, by using the formula,
k 27T,
w=Vo, m=VIy

If the mercury rises 1n the left arm by x it must fall by a slanting length equal to x in the
other arm. Total pressure difference in the two arms will then be

To

pgx+pgxcos® =pgx(1l+cosB)
This will give rise to a restoring force
-pgSx(l+cosH)
This must equal mass times acceleration which can be obtained from work energy principle.
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4.28

NRHINTHY,

1,

1]

The K.E. of the mercury in the tube is clearly : -;-mx

So mass times acceleration must be : m x’
Hence mx +pgS(l+cosB)x =
This is S.H.M. with a time period

m
T- ZJt.vpgS(1+cos6)'

In the equilibrium position the C.M. of the rod lies nid way between the two rotating wheels.
Let us displace the rod horizontally by some small distance and then release it. Let us depict
the forces acting on the rod when its C.M. is at distance x from its equilibrium position (Fig.).
Since there is no net vertical force acting on the rod, Newton’s second law gives :

k“”z"’l‘—l/z_" NIT 0 C TNZ

g YT

kL mg

Nl +N2 = mg (1)
For the translational motion of the rod from the Eqn. : F, = mw,,
kN, -kNy = mx ?)

As the rod experiences no net torque about an axis perpendicular to the plane of the Fig.
through the C.M. of the rod.

l+x I-x
N(EE) (5 ) o)
Solving Eqgns. (1), (2) and (3) simultaneously we get
x = - kg-lﬂx

Hence the sought time period

‘/ l 1/21
T=2n Tkg 1 kg 1-5s
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The only force acting on the ball is the gravitational force I?: of magnitude y gn pmr,

where y is the gravitational constant p, the density of the Earth and r is the distance of
the body from the centre of the Earth.
4n

3

>
F=-mg kr— , here R is the radius of the Earth and the equation of motion in projection

-
But, g =y P R, so the expression for F can be written as,

mg .

R*=0

form has the form, or, mx +

The equation, obtained above has the form of an equation of S.H.M. having the time

period, T-2n\/§-,

Hence the body will reach the other end of the shaft in the time,

t--z=nvg‘i = 42 min.
2 8

From the conditions of S.H.M., the speed of the body at the centre of the Earth will be
maximum, having the magnitude,

v=Rw=RVg/R =VgR =79km/s.

4.30 In the frame of point of suspension the mathematical pendulum of mass m (say) will oscillate.
In this frame, the body m will experience the inertial force m ( - w’) in addition to the real
forces during its oscillations. Therefore in equilibrium position m is deviated by some angle
say o. In equilibrium position

Tocosaa = mg+mwcos(n-f) and Tysinaa = mwsin(n-f)

So, from these two Eqns

ana=8-WCsB
wsin

Vm2w2sin2ﬁ+(mg—mwa)2 m

and cos o=

mg-mw cos f
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4.31

4.32

Let us displace the bob m from its equilibrium position by some small angle and then release
it. Now locate the ball at an angular position (o + ) from vertical as shown in the figure.
From the Eqn. : Ny, = I8,
—mglsin(a+9)—mwcos(n—B)Isin(a+9)+mwsin(n—B)Icos(a+6)=ml2é.
or,— g (sin & cos 0 + cos a sin 8) - w cos (%t - B) (sin & cos 0 + cos a sin 0) + wsin

(cos a. cos 6 - sin a sin 0)

=16

But for small O, sin® « 0 cosO =1

So, - g (sin a + cos 0. 0) - w cos (n - B) (sin & + cos @ 0) + w sin B (cos a - sin a 0)
=16

or, (tana+9)(woosﬁ—g)+wsmﬁ(1-tanae)-cosae )

Solving Eqns (1) and (2)‘ simultaneously we get
-(g-2wgcosp+w?)0= l\[gz+w2—2wgcosﬁ 0
— —>
Thus 0 =- 15—‘1—”’—19

Hence the sought time period T = i)_n =2n V '—sl——_-,-
0

g-wl

Obviously the sleeve performs small oscillations in the frame of rotating rod. In the rod’s
frame let us depict the forces acting on the sleeve along the length of the rod while the sleeve
is at a small distance x towards right from its equilibrium position. The free body diagram
of block does not contain Coriolis force, because it is perpendicualr to the length of the rod.
From F, = mw, for the sleeve in the frame of rod

—KX+M’X = mx

.o K 2
or, x =-| - x (1)

Thus the sought time period

T=—2% — -07s P

K
m

It is obvious from Eqn (1) that the sleeve will not perform small oscillations if

=2 v L3 10 rod/s.
m

When the bar is about to start sliding along the plank, it experiences the maximum restoring
force which is being provided by the limiting friction,

Thus

kN-m(o(z,a or, kmg-:mwga
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433 The natural angular frequency of a mathematical pendulum equals wy = V g/I

@

(b)

(©)

We have the solution of S.H.M. equation in angular form :
0 =60,cos(wyt+ a)

If at the initial moment i.e. att = 0, 6 = 68, than a = 0.

Thus the above equation takes the form
0 = 0,cosmy

,/5 - 30 \/2'§
6,, cos lt 3° cos 08 t

3°cos 35 ¢

Thus 0

The S.H.M. equation in angular form :
0 =0,sin(wyt+a)
If at the initial momentz = 0, 8 = 0, then o = 0.Then the above equation takes the
form
6 = 0,sinwgy¢
Let vy be the velocity of the lower end of pendulam at 0 = O, then from conserved of
mechanical energy of oscillaton

Emean = Eadremc or T, mean = Ualnm

or, %mvé=mgl(1—cos@m)

Thus

o = cos- 1o ) o cos-t] 1027 |, &
" 2g1 2x9-8x0-8|

Taus the sought equation becomes
0 =0,sinwgz = 45°sin3-5¢

Let 6y and v, be the angular deviation and linear velocity at ¢ = 0.
As the mechanical energy of oscillation of the mathematical pendulum is conservation

%mv§+mgl(1-cos90) =mgl(1l-cosB,)

2
Vo
or, ?sgl(coseo-cose,,,)

2 : 2
Thus @, = cos™! {coseo-i-%}=cos'l{cos3°- x(0~22x - }-5~4°
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Then from 6 = 5.4° sin (3.5¢ + a), we see that sin o = -5%—‘- and cos a < 0 because

n

the velovity is directed towards the centre. Thus a = >

+ 1.0 radians and we get the

answer.

4.34 While the body A is at its upper extreme position, the spring is obviously elongated by the

amount
mig
= |
If we indicate y-axis in vertically downward direction, Newton’s second law of motion in
projection form i.e. F, =m w), for body A gives :

a-

m m

mlg+x(a——'1(—g)-mlm2a or,x(a-—i—g-)-ml(mza-g) 1)

(Because at any extreme position the magnitude of acceleration of an oscillating body equals
®”a and is restoring in nature.)

If N be the normal force exerted by the floor on the body B, while the body A is at its upper

extreme position, from Newton’s second law for body B

N+x(a—m—;g-) =myg

or, N-ng—x(a—%g) -ng-ml(mza—g)(usingEqn.l)

HenceN = (m1+m2)g—m1co2a

When the body A is at its lower extreme position, the spring is compresed by the distance
m
(a . e )
K
From Newton’s second law in projeciton fonn i.e. F, = mw, for body A at this state:
mg
K
In this case if N’ be the normal force exerted by the floor on the body B, From Newton’s
second law

mg-x h+£%§ =-my (- w’a) or, x| a+ -ml(g+(n2a) 3)

m
for body B we get: N' = K(a+ %g)+m2g = ml(g+m2a)+m2g(using Eqn. 3)

2
Hence N' =(m+m)g+mow-a

From Newton’s third law the magnitude of sought forces are N’ and N, respectively.

4.35 (a) For the block from Newton’s second law in projection form F, = mw,

N-mg=my 1)
But from y=a(l-cosmt)



()

©

4.36 (a)
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We get y = 0’acoswt 2
From Eqns (1) and (2)
2
N=mg 1+gg-g-coscot A3)
From Newtons’s third law the force by which the body m exerts on the block is directed

2
vertically downward and equls_ N = mg ( 1+ %’- Cos @ t)

When the body m starts, falling behind the plank of loosing contact, N = 0, (because the

normal reaction is the contact force). Thus from Eqn. (3)
2

mg(1+9-g—a-cosmt) = 0 for some ¢

Hence App = g/u)2 = 8 cm.

We observe that the motion takes place about the mean position y = a. At the initial
instant y = 0. As shown in (b) the normal reaction vanishes at a height (g/u)z) above
the position of equilibrium and the body flies off as a free body. The speed of the body
at a distance ( g/u)z) from the equilibrium position is @V a2—( g/(o2)2, so that the
condition of the problem gives

-83+ a=h

[0Vd-(g/o) P
+
2g w
Hence solving the resulting quadratic equation and taking the positive roof;

an-ﬁz.+v—2—h23— « 20 cm.
0 w

Let y(t) = displacement of the body from the end of the unstreched position of the
spring (not the equilibrium position). Then
my = -xy+mg

This equation has the solution of the form

y=A+Bcos(wr+a)

if -mw’Bcos(wt+a) = -k[A+Bcos(wt+a))+mg
Then w =X ad 4=CE

m 3
we have y=0 and y=0 at r=20.So

~wBsina =0
A+Bcosa =0
Since B>0 and A> 0 we must have a. = =

B=A="8
X
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4.37

and y--"ig-(l-coswt)

(b) Tension in the spring is
T=xy=mg(l-cosat)

so Toex =2mg, Tyn = 0
In accordance with the problem -
Fe-amr
So, m(x 1+yf')=-am(x:+yﬂ
Thus X =-axad y =-ay

Hence the solution of the differential equation
X = —ax becomes x = acos(wpt+d), where w3 = a

So, x = - awgysin(wgt+a)
From the initial conditions of the problem, v, = 0 and x =r, at t =0
So from Eqn. (2) o = 0, and Eqn takes the form

X = rgcos gt SO, COSWgl = x/1y
One of the solution of the other differential Eqn y' = -y, becomes

y = a'sin(wot+0'), where o = o

From the initial condition,y = 0 at ¢ =0, so & = 0 and Eqn (4) becomes :

y = a'sin 0y 1(5)
Differentiating w.r.t. time we get

y = a’ wycos Wy ¢
But from the initial condition of the problem, y = v, at t = 0,
So, from Eqn (6) Vo=a'wg or, a =vy/w,
Using it in Eqn (5), we get

Vo Wey
y = ——-smo)ot or sinwgt = ——
@ Vo
Squaring and adding Eqns (3) and (7) we get :
2 2
. 2 2 oy X
sin“wgt+ cos“wot = ——+ —
Vo To

2 2
X X2y - = w2
or, ('o) +a(vO) -1'( as o, u)o)

@)
2

3
C)

©

@

1.38 (a) As the elevator car is a translating non-inertial frame, therefore the body m will experience
an inertial force m w directed downward in addition to the real forces in the elevator’s

frame. From the Newton’s second law in projection form

F, = mw, for the body in the frame of elevator car:

—x(-":—(g-+y)+mg+mw =my

4



(®)

21

( Because the initial elongation in the spring is m g/x )

. mw
50, my --xy+mw--x(y——x——)
& mw K mw
on dtz(y— x ) = —;(y- K ) @)

Eqn. (1) shows that the motion of the body m is S.H.M. and its solution becomes

y—ﬁ'c—“izasin(v&t«ra) )

Differentiating Eqn (2) w.r.t. time

9-‘,@008(\/5_,”) )

Using the initial condition y (0) = 0 in Eqn (2), we get :

. mw
asmo = - ——
K

and using the other initial condition y (0) = 0 in Eqn (3)

.‘/K
we get ay\{ — cosa=0
m

Thus a=-a/2 and a--'!';(—"—'

Hence using these values in Eqn (2), we get
D R
y K m
Proceed up to Eqn.(1). The solution of this differential Eqn be of the form :

mw . .‘/K
y-—=asm( —t+6)
X m
or, -a—t-asin(vit+6)
’ Y x/m m
or, y-a—;=asin(mot+6) (wher Wy = V —K—) “)
0

0 m

From the initial condition that att= 0, y (0)= 0,500 = asind or 8 =0

Thus Eqn.(4) takes the from :y - 9—5{ = asinwyt o)
o
Differentiating Eqn. (5) we get : y - % = awycos wt (6)
N

0
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4.39

4.40

But from the other initial condition y (0) = 0 at ¢ = 0.

So, from Eqn.(6) -% =amwyg OF a= -a/mg
Wo
Putting the value of a in Eqn. (5), we get the sought y (). i.e
at a . a .
y-—7 =-—3sinwgt or y=—(wyl-sinwyt)
Wy (O] Wy

There is an important difference between a rubber cord or steel coire and a spring. A spring
can be pulled or compressed and in both cases, obey’s Hooke’s law. But a rubber cord becomes
lodse when one tries to compress it and does not then obey Hooke’s law. Thus if we suspend
a'body by a rubber cord it stretches by a distance m g/x in reaching the equilibrium
configuration. If we further strech it by a distance A h it will execute harmonic oscillations
when released if Ah < m g/x because only in this case will the cord remain taut and obey
Hooke’s law.
Thus Ahy,, =mg/x
The energy of oscillation in this case is
1m

3K (Ahy ) = —;g—
As the pan is of negligible mass, there is no loss of kinetic energy even though the collision
is inelastic. The mechanical energy of the body m in the field generated by the joint action
of both the gravity force and the elastic force is conserved i.e. AE = 0. During the motion
of the body m from the initial to the final (position of maximum compression of the spring)
position AT = O, and therefore AU = AU, +AU,, = 0
or -mg(h+x)+%xx2-0
On solving the quadratic equation :

K
As minus sign is not acceptable

22
x-mg +\/ng+ 2mgh
K K K

If the body m were at rest on the spring, the corresponding position of m will be its equilibrium
position and at this position the resultant force on the body m will be zero. Therefore the
equilibrium compression A x (say) due to the body m will be given by

KkAx =mg or Ax = mg/x
Therefore seperation between the equilibrium position and one of the extreme position i.e.
the sought amplitude

2 2
amronx- VL, 2meh
K
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The mechanical energy of oscillation which is conserved equals E = U, ,because at the
extreme position kinetic energy becomes zero.

Although the weight of body m is a conservative force , it is not restoring in this problem,
hence U_yeme is only concerned with the spring force. Therefore

2 2
E =Upeme = %Ka2 = mgh+m—2£—

Unlike the previous (4.40) problem the kinetic energy of body m decreases due to the perfectly
inelastic collision with the pan.Obviously the body m comes to strike the pan with velocity
Vo =V2gh If v be the common velocity of the " body m+ pan " system due to the

collision then from the conservation of linear momentum
mvyg = (M+m)v

mvg _m 2gh 1
(M+m) (M+m)
At the moment the body m strikes the pan, the spring is compressed due to the weight af “he
pan by the amount M g/x . If I be the further compression of the spring due to the \ciocity
acquired by the "pan - body m " system, then from the conservation of mecksnical encrgy
of the said system in the field generatad by the joint action of both the gravity and spring
forces

or V =

2 2
—1-(M+m)v2+(M+m)gl - l.( —M—g.,.” - lK{M_g_\,
2 2 K J 2 L X )
2 2 2
1 m2g h My, L 1, (Mg e
or,E(M+m)(M+ )+(M+m)gl = ( »Mgl-zx ” (Using 1)
1 m;2 gh
or, 21(12 mgl —Q—-—(mhv)—-
2 2 2xghm
ngsV migr, 2kt
Thus | =
K
As minus sign is not acceptable
BT VR T
B (M +m )
If the oscillating “pan + body m’ system were at rest it correspond to their equilbgium position
i.e. the spring were compressed by (_M_+____)_g_ therefore the ampliiude of oscillation

a=1-7E T8
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4.42

The mechanical energy of oscillation which is only conserved with the restoring forces

1 . . .
becomes E = Ugpome = =K a’ (Because spring force is the only restoring force not the

2
weight of the body)
Alternately E="T,.,= %(M+m)azm2
1 2 )Ly,
thus E-2(M+m)a (M+m)—2ka
-2 . - .
We have F = a(yi= xj )
or, m(xi¥yj)=a(yi=xj)
So, mx =ay and my = -ax 6))
From the initial condition,atz = 0, x = 0 and y = 0
So, integrating Eqnmx’ = ay
we get © < o-ay 0r5c=%y ?)
Using Eqn (2) in the Eqn m = -ax, we get
2 2
. a . a
- — = - —_— 3
my wy oy (m) y €

one of the solution of differential Eqn (3) is

y =Asin(wgt+a), where wy = a/m.
Asatt =0,y = 0, so the solution takes the form y = A sin wg?
On differentiating w.r.t. time y = A wq cos wg ¢

From the initial condition of the problem, at ¢ = 0, y = vo

So, vo=Awy or A = vy/wy
Thus y = (vo/wg)sin wg ¢ @)
Thus from (2) x = v, sin wy? so integrating
B Yo t 5
x " % cos my )
. Vo
On using x=0att=0,B=—
]
Vo
Hence finally X = w_( 1-coswyt) 6)
0

Hence from Eqns (4) and (6) we get
[x=(vo/@0) P + ¥ = (vo/wo )’

which is the equation of a circle of radius (vo/wgy) with the centre at the point
X9 = Vo/wg, yo = 0
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4.4

40

If water has frozen, the system consisting of the light rod and the frozen water in the hollow
sphere constitute a compound (physical) pendulum to a very good approximation because we
can take the whole system to be rigid. For such systems the time period is given by

/ \ / 2
=2n é 1+ llc_2 where k2 = ZR 2 is the radius of gyration of the sphere.

5

The situation is different when water is unfrozen. When dissipative forces (viscosity) arc
neglected, we are dealing with ideal fluids. Such fluids instantaneously respond to (unbalanced)
internal stresses. Suppose the sphere with liquid water actually executes small rigid
oscillations. Then the portion of the fluid above the centre of the sphere will have a greater
acceleration than the portion below the centre because the linear acceleration of any element
is in this case, equal to angular acceleration of the element multiplied by the distance of the
element from the centre of suspension (Recall that we are considering small oscillations).
Then, as is obvious in a frame moving with the centre of mass, there will appear an
unbalanced couple (not negated by any pseudoforces) which will cause the fluid to move
rotationally so as to destroy differences in acceleration. Thus for this case of ideal {luids the
pendulum must move in.such a way that the elements of the fluid all undergo the same
acceleration. This implies that we have a simple (mathematical) pendulum with the time

period :
‘/l
Tp=2n -
¢ g
2
2(R
Thus T, =T, 1+§(7)

(One expects that a liquid with very small viscosity will have a time period close T, while
one with high viscosity will have a time period closer to T;.)

Let us locate the rod at the position when it makes an angle 0 from the vertical. In this
problem both, the gravity and spring forces are restoring conservative forces, thus from the
conservation of mechanical energy of oscillation of the oscillating system :

;m3l (9) +mg (1 cosB)+—x(19) = constant
Differentiating w.r.t. time, we get :
1m0 mgl. oo 1 0,00
273 269+ > sm99+2|cl 260 =0

Thus for very small 6

~

6 = —-3—-5(1+—K—L)6
2 mg

w

Hence, Wy = —2—%(1+-5é)
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4.45 (a) Let us locate the system when the threads are deviated through an angle o’ < o , during
the oscillations of the system (Fig.). From the conservation of mechanical energy of the
system :

2.
-;—-'—41-42‘—924- mgl(l-cosa') = constant (1)

Where L is the length of the rod, 6 is the angular
deviation of the rod from its equilibrium position i.e.
6 =0

Differentiating Eqn. (1) w.r.t. time

1mL?
2 12

200 + mglsina’a =0

2

So I{_zéé'+ glo'a' = 0(forsmalla’, sina’ « ') )

b

But from the Fig.

L s or =L 0

2 21
., L
So, a = 2,9
Putting these values of o’ and %— in Eqn. (2) we get
2
ae 3_89
dr? I

Thus the sought time period
T = 2_’.2 = 23t \’ ‘I—
) 38

(b) The sought oscillation energy

E = U_pope =mgl(l-coso) = mgl2sin2%

2 2
«mgl25- = ﬂgzli(because for small angle sin 0  0)

1

.. 1 ., mR? 2 1 2:2
NV 7] - - | —— -
4.46 The m.,.oftbedlscxszhp 2( 2 )(p 4mR )

The torsional potential energy is %k(pz. Thus the total energy is :

1, 2 1 ,2°2 1, 2
2k(p 4mR q30+2k¢'0

By definition of the amplitude ¢,,, @ = 0 when ¢ = @,. Thus total energy is

:lt-mthiuz-t-
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1 1 1
Fk@n = MR G+ >k}

4
\/ mR2 %
or Pm = Po 1+ 2k

2

27

Moment of inertia of the rod equals mlZ about its one end and perpendicular to its length

3

Thus rotational kinetic energy of the rod = 5( ) 6 = -"L!—

when the rod is displaced by an angle 0 its C.G. goes up by a distance

%(l-cose)- I—g—zfor small 6.

Thus the P.E. becomes : m g%

As the mechanical energy of oscillation of the rod is conserved.

2 .
-;—(L"—s-l—-) 92+-;—(12&£)92= Constant

on differentiating w.r.t. time and for the simplifies we get : B= - ?% 0 for small 6.

we see that the angular frequency o is
=V3gr2l

we write the general solution of the angular oscillation as :
0 =Acoswt+Bsinwt

But 0 =0, at t =0, so A =@
and 6 =0, at t=0,s0
B = 0yw
Thus Gsﬁooosmﬂ—(fsinmt
Thus the KE. of the rod
2
T = %Bz =[- o Oy sin @ 1+ 0gcos w ¢ |*
mi®
= —[6 cos? w £ + w? Oosm cot—20)000(,smmtcosmt]

On  averaging over one time period the last term  vanishes

<sinfwt>=<cos’wt>=1/2 Thus

<T>= —l—mlzé(2,+£

1202 (wr 2_ 2 ,m
12 8mé‘l 0, (where "= 3g/210)

and
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4.48

4.49

Let I = distance between the C.G. (C) of the pendulum and. its point of suspension C
Originally the pendulum is in inverted position and its C.G. is above O. When it falls to th
normal (stable) position of equilibrium its C.G. has fallen by a distance 2 /. In the equilibriun

position the total energy is equal to KE. = %I ®” and we have from energy conservation :

l-I<.02 =mg2l or I= dmegl
2 w?

Angular frequency of oscillation for a physical pendulum is given by w3 = m glI

2
Thus Te22 VL w2xVAinghe 4=

mgl mgl 3

Let, moment of inertia of the pendulum, about the axis, concemned is I, then writing
N, = IB,, for the pendulum,

—mgxsinae-lé or, é---m—Ig—xB (For small 6)

which is the required equation for S.H.M. So, the frequency of oscillation,

Mgx I /2
w; = _Ig_ o, X = ATg; (O 1)
Now, when the mass m is attached to the pendulum, at a distance / below the oscillating axis,

-Mgxsin0' -mglsin® =(I+ml )u

_gMx+ml) _d’e
(I+ml?) PTEN
which is again the equation of S.H.M., So, the new frequency,

or, ( For small 8 )

\/ g(Mx+ml) @

Wy =

(I+ml1?)
Solving Eqns. (1) and (2),
\/g((l/g)mnml)
(I+ml )
or m2=1wf+mgl
’ 2 I+ml?
or, I(u)%—oo%)-smgl—mu)%l2

and hence, 1=mlz(u)%—g/l)/(mf—u)%)=O-8g-m2
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When the two pendulums are joined rigidly and set to oscillate, each exert wrques on the
other, these torques are equal and opposite. We write the law of motion for the two pendulums
as

L0 = -0?L0 + G
L6 = -wlL6 -G

where + G is the torque of mutual interactions. We have written the restoring forces on each
pendulum in the absence of the other as - (ofIl 0 and - m%!z 0 respectively. Then

Il(l)f + 12(1)%
T L+

H -"Ilﬂ)i‘f'Iz(D%
ence w = I" +12

1

0 = 0= -wl0

Let us locate the rod when it is at small angular position 0 relative to its equilibrium position.
If a be the sought distance, then from the conservation of mechanical energy of oscillation

mga(l-cosO)+ %100' ((.))2 = constant

Differentiating w.r.t» time we get :
mgasineé+ %100299 =0
2
2

But Ipo = %—+ ma“ and for small 8, sin@ = 0, we get

r 2
12+a

Hence the time period of one full osscillation becomes

2 2 2
T=2n i—2+ a’>  or T2=%(112a+a]
ag
d( I?
For Tron > Obviously :1:(1—2—a-+ a) =0
So - 2 +1=0 or a=;
’ 1242 V3

\ [ 1
Hence Ton = 2m —=
gV3
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4.52

4.53

Consider the moment of inertia of the triangular plate about AB.
I = ffxzdm =ffx2pdxdy

h ) 2k h 5 A B
1-X 2_2_
= x“pdx C = x (h-x)dx x
) s TIPS
J2p (KK el i &
Vi3 4) 6V3 6
On using the area of the triangle AABC = —h’i andm = pA. ¢
VE)
, 1mhi
Thus K.E. =5—g—ez
h 1 0>
PE. ==mg3(1—cos())-=2mgh3

Here O is the angle that the instantaneous plane of the plate makes with the equilibrium
position which is vertical. (The plate rotates as a rigid body)

1 mh2 "2 1 mgh
Thus E-ETG +2 3 62
2
2 2g - mgh [ mh
Hence w 7 3 /—-—-6
\/ h \/Zh
So T=2n _Zg =7 —-—g . and gy = B/2.

Let us go to the rotating frame, in which the disc is
stationary. In this frame the rod is subjected to coriolis
and centrifugal forces, F,, and F.;, where

F,, -f2dm(v'x @) and F., -fdmm?,r,

where r is the position of an elemental mass of the
rod (Fig.) with respect to point O (disc’s centre) and

V o= —

dt
As r=OP = OA+AP
dr d(AP) , .
So, 7y e (as OA is constant)

As the rod is vibrating transversely, so v’ is directed perpendicular to the length of the rod.
Hence Z dm { v x @) for each elemental mass of the rod is directed along PA. Therefore the
net torque of coriolis about A becomes zero. The not torque of centrifulgal force about point
A

Now, :‘_:fw -fAPx dmwir =fAPx (?\dsmﬁ(OA«rAP)

/
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=fAPx (%ds)m%;oz\ -f%dm?,sasme(-k)

14
= %m%asinﬂ(-k)fsds = mmgaésine(—k)
0
SO, ‘t‘.f(z) - -:f(A) k= —mw%a%sin@
According to the equation of rotational dynamics : T4z = [, 0z
2 1. mi? -
or, mmoazsme KN 0
2
.o émoa .
o, 0 = - > sin 0
. 3 wla
Thus, for small 0, 0 » - 5 —-I—B
3wa

This implies that the frequency g of oscillation is wy =

4.54 The physical system consists with a pulley and the block. Choosing an intertial frame, let us
direct the x-axis as shown in the figure.

v

Initially the system 1s in equilibrium position. Now from the condition of translation
equilibrium for the block

Ty=mg 0Y)
Similarly for the rotational equilibrium of the pulley
KA/R= ToR

or. Ty=xAl @)
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4.55

from Eqns. (1) and (2) Al= ﬂK& 3)

Now let us disturb the equilibrium of the system no matter in which way to analyse its motion.
At an arbitrary position shown in the figure, from Newton’s second law of motion for the
block

F.=mw,
mg-T=mw=mx )}
Similarly for the pulley
N,= I8,
TR-x(Al+x)R=160 )
But w=PBR or, x=RO (6)
from (5) and (6) TR-x(Al+x)R= I%.i'. Q)
Solving (4) and (7) using the initial condition of the problem
~KRx= (mR + é)x
.e X
or, X = - 7|
m+ ;2‘

\ / 2
Hence the sought time period, 7 = Z_m:c_- 2x m—i':i

Note : we may solve this problem by using the conservation of mechanical energy also

At the equilbrium position, N,, = 0 (Net torque about 0)

So, mygR-mgRsinaa =0 or m, = msina (6]
From the equation of rotational dynamics of a solid body about the stationary axis (say z-axis)
of rotation i.e. from N, = If,

when the pulley is rotated by the small angular displacement 0 in clockwise sense relative to
the equilibrium position (Fig.), we get : il
mygR-mgRsin(a+0)
2 .
= [MzR + mR*+ mARz] 0

Using Eqn. (1)
mgsino —m g (sino cos 8+ cos asinB)
- {MR+ 2m(1+sina)R}é-

2
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But for small 6, we may write cos® « 1 and sin0 = 0

Thus we have

{MR+2m(1+ sina)R}é'
2

mgsina-mg(sina+cosaf) =

2mgcos a
T [MR+2m(1+ sma)R]

Hence, 9 -

2mgcos o
MR+ 2mR(1+ sina)

Hence the sought angular frequency wgy = v

Let us locate solid cylinder when it is displaced from its
stable equilibrium position by the small angle 6 during its
oscillations (Fig.). If v, be the instantaneous speed of the
CM. (C) of the solid cylinder which is in pure rolling,
then its angular velocity about its own centre C is

W =v/r

@
Since C moves in a circle of radius (R - r), the speed of C at the same moment can be written
as

V. =0(R-71) )
Thus from Eqns (1) and (2)

co-é(R—r—rl 3

As the mechanical energy of oscillation of the solid cylinder is conserved, i.e. E = T+ U =
constant

So, %mvf+%lcm2+mg(R—r) (1-cos8) = constant

(Where m is the mass of solid cylinder and I, is the moment of inertia of the solid cylinder

about an axis passing through its C.M. (C) and perpendicular to the plane of Fig. of solid
cylinder)

2
or, %mm2 2+§-m2—m2+mg(R—r)(1—cos9)-constant (using Eqn (1) and

I=mr ;)
(9)2(R r)’ +8(R-r)(1-cos@) = constant, (using Eqn. 3)
Differcntlatmg w.r.t. time

%(R—r)Zéé'+gsin6é =0

5 - .28 ;
So, 0 3(Ro7) 0, (because fer small 6, sinBx 6 )

Thus Wy = v _2.5_

3(R-r)
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4.57

4.58

Hence the sought time period

3(R-r

2x
T-mo-ZJt 22

Let x; and x, be the spring constant of left and right sides springs. As the rolling of th
solid cylinder is pure its lowest point becomes the instantencous centre of rotation. If 0 be
the small angular displacement of its upper most point relative to its equilibrium position,
the deformation of each spring becomes (2 R 6 ). Since the mechanical energy of oscillation
of the solid cylinder is conserved, E = T+ U = constant

ie. 2L,(87+2x,(2R0)’ +%x2(2xe)2 = constant
Differentianting w.r.t. time
1 2éé'+%(xl+x2)4R229é -0

R4
mR? 2} & 2
or, 2 +mR)9 +4R“x0 =0
2
(BecauseIP=IC+mR2-m; + mR?
Hence o =_8%g
3m

Thus wy = Sk and sought time period

3m
2n 3m 3m
T=a “2"V3ge ="V 3¢

In the CM. frame (which is rigidly attached with the centre of mass of the two cubes) the
1
2
p is the reduced mass and v, is the modulus of velocity of any one body particle relative
to other. From the conservation of mechanical energy of oscillation :

2
1 2,1, /4
Zxx L dt(lo+x)} constant

cubes oscillates. We know that the kinetic energy of two body system equals uv,i. , Where

Here | is the natural length of the spring.

Differenting the above equation w.r.t time, we get :

d(lh+x) J.‘]

ar

%Kinw%qufc' =0 [becomes

. m
Thusx = —-E—x (where no= 17 )

m; +my

m; my
my +my,

Hence the natural frequency of oscillation : w, = V i— where p =
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4.59 Suppose the balls 1 & 2 are displaced by x, x, from their initial position. Then the energy
is:E = %mlﬁ + sz.c2 + %k(xl -x)’ = %mlvf

Also total momentum .is : myx; + myx, = m; vy
myx; + myx.
Deﬁne X.;”)x-xl—xz
m + m,

Then X=X+ ——x, =X - ———x
m; +my m; + mp
1 m . 1
E = —-(m1+m2)X2+ 2;‘-1-1-—"‘21?2-0- Ekxz
mv

Hence 171
my + my

2 2

1 mm x2+— 1 2 1 mvi

1
kx? = = - =
2m1 +m 3 2™MV1T 3 m+m 2m + m

(a) From the above equation

1/!5_ ‘/3X24 -1 mm 2
We see @ " 2 6s, when p e+ mg 3kg.

(b) The energy of oscillation is
1 _mm v%-%%x(0.12)2-48x104-4.8m1

So

2m+m
We have x = asin (ot + a)
Initially x=0att=0s0o a=0
Then X = a sin wt. Also x = v; at ¢t = 0.
\
So ma-vlandhcncea-—l-lg--Z
® 6

4.60 Suppose the disc 1 rotates by angle 8, and the disc 2 by angle 8, in the opposite sense. Then
total torsion of the rod = 6; + 0,

. 1 2
and torsional PE. = ~x (0, +60,)
27 W (2)
The KE. of the system (neglecting the moment of inertia
of the rod) is
. . ( D
-;—I 1 9% + %I 2 9% \

So total energy of the rod

E=oh&eln6+2x(0,+6,)

We can put the total angular momentum of the rod equal to zero since the frequency associated
with the rigid rotation of the whole system must be zero (and is known).



4.61

» 91 éz 01+92
Thus L8 =5h8 o Tr=1L = T+,
. I .. . L
So 0, = Il—fl-(eﬁe,) and 6, = TAYA (0,+6,)
and E= 1 1112 (9 +9)+—x(9 +6,)?
21 I 1 2 1 2

The angular oscillation, frequency corresponding to this is

LI ‘/ I 1 I
2 142 . r - afh
o X / YA k/I' and T =2xn , where I’ ya

In the first mode the carbon atom remains fixed and the oxygen atoms move in equal &
opposite steps. Then total energy is

@
% 5OBTBUI0 . QLR @
1 2.1
52 m0x2 + ) 2 sz
where x is the displacement of one of the 0 atom (say left one). Thus
wf = x/my.
@

In this mode the oxygen atoms move in equal steps in the same direction but the carbon atom
moves in such a way as to keep the centre of mass fixed.

2mo
Thus 2mgx+m.y =0 or,y = - o
1 v 1 2m0. 1 1 2Zmyg 1 2mgy) -,
KE.= 52m0x2+2mc( . )- 52m0x +22m0 x2 = §2mo(1+ o x

(4 mc

2 . 2
2 2 2
P.E.=%k(1+ "'")x’ +%x( ":"“)xz -—-2x(1+ "'°)f

2 —K_ mg 2m0
Thus w; mo( c) and w, m1V1+ -y

v 32 v 11
Hence, wy, = 0 1+-1—2- =0 V5 - 191 oy
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*. 4.62 Let, us displace the piston through small distance x, towards right, then from F, = mw,

4.63

1.

P

|

1

tex.

Pl
or, (p,-p,)S = -mx (6]
But, the process is adiabatic, so from P V¥ = const

s = Vs oy = Po Vo
27 (Vo-5x)T LT (Vo+Sx)"

as the new volumes of the left and the right parts are now (V + S x) and (V; — S x) respectively.
So, the Eqn (1) becomes.

poV()S{ 1 1 } .
=X

m Y (Ve-Sx) (Vo+Sx)

poVbS (Vo+Sx) - (Vo-Sx)
or, 2 o227 ==X
mo (Vo -87x7)

S S
P VIS (“ lf"o{]'(l' u)

Vo .
or, o 52,2 —| = - X
Vi (1 - 7—21—)
V
0
752x2
Neglecting the term —72—— in the denominator, as it is very small, we get,
0
2poSiyx
X - -
m Vo

which is the equation for S.H.M. and hence the oscillating frequency.

2
(00:5\/ SPoY

mVo

In the absence of the charge, the oscillation period of the ball
T=2nVli/g
when we impart the charge g to the ball, it will be influenced by the induced charges on the

conducting plane. From the electric image method the electric force on the ball by the plane
2

—— and is directed downward. Thus in this case the effective acceleration

Adneyg(2h)

of the ball

equals



4.64

4.65

q2

"' P et
£ =8 16neomh2

and the corresponding time period

re2xV 1 - 2,,\/ -

16ne0mh
From the conditon of the problem
T=nT'
So, T2 = n?T'? o l--‘l]2 1 3
g + _9_2
16xegmh

Thus on solving

q=4h \/neomg('nz— 1) =2ucC

In a magnetic field of induction B the couple on the magnet is - M B sin 0 = - M B 8 equating
this to 16 we get

10 +MBO = 0
T} S
or w 7 °r T=2n MB
Given T, = Ty/y
. VEI.VIL,1_ 11
' B, B, n B, B v
or Bz-nzBl

The induction of the field increased 1’ times.

We have in the circuit at a certain instant of time (¢ ), from Faraday’s law of electromagnetic
induction :

di dx .
Ldt-Bldt or Ldi=Bldx
. . Bl
As at t=0,x=0, so Li=Blx or z-Tx(l)
|
For the rod from the second law of motion F, = m w,
-ilB = mx
. . 1°B 2
Using Eqn. (1), we get : X == | X - wox )
where Wy = IB/V mL

The solution of-the above differential equation is of the form
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x = asin(wgt+ a)
From the initial condition, at ¢t = 0, x = 0, so o = 0
Hence, X = asinwgt A3)
Differentiating w.r.t. time, X = a g cos wg ¢
But from the initial condition of the problem at ¢ = 0, x = v,
Thus Vo=awy Oor a = vy, “
Putting the value of a from Eqn. (4) into Eqn. (3), we obtained

x-zgsinmt where g = 1B
wp 0 " VmL

As the connector moves, an emf is set up in the circuit and a current flows, since the emf is

§=—Bli,wcmusthave:—Blfc+L%t£-0 L

$0, I =Blx/L :MMMMH

provided x is measured from the initial position.
We then have

KK K
K X x

X

A X X
K KX

mx = —Eig-.B.ng

for by Lenz’s law the induced current will oppose
downward sliding. Finally

.. (BI)?
X +_mL p 4

. Bl
on puttin; Wy = ———
putting Y

r+oix =g

A solution of this equation is x = —%+A cos(wpt+a)
o
But x =0 and x = 0 at ¢ = 0. This gives
X = —55 (1-coswgt).
@9
We are given x = aoe'B' sin w ¢
(a) The velocity of the point at ¢ = 0 is obtained from
Vo=(Xx).o= 0a

The term "oscillation amplitude at the moment ¢ = 0" is meaningless. Probably the im-

plication is the amplitude for ¢ < < 1 . Then x = a, sin w ¢ and amplitude is a,.

B

®) x = (—ﬁaosinmt-e-u)aocoswt)e'a' =0



40

when the displacement is an extremum. Then

®
tanwt = —
p
or mtetan'l%+nn,n-0,1,2,...
4.68 Given ¢ = gpe Plcosmr
we have ¢ = —Bop-wqpe P'sinwt
¢ =-Pp+Pogre Psinwr-wlpe Peosmr

= plo+2Bwgre Psinor-wly

SO
@ (9l =-Bwo, (¢ ) = (B -0’)qp

b) ¢ =-gpe” ﬂ'( B cos w ¢ + w sin w ¢ ) becomes maximum (or minimum) when

8

¢ = (p*-0’)e Pcoswr+r2Bwgre Psinwr =0

2 2
o -
or tanmt=———-—E

2@

1 L o - B2

and t, = —|tan~ —E—+nn ,m=0,1,2,...

W 2fw
4.69 We write x = age ?' cos (wt+a).
J

n —_— -Br .

(a) x(0)=0=>a-::—2—=>x=+ age " sinmt

x(0) = (x).0=% wa,
Since ay is + ve, we must choose the upper sign if x (0 ) < 0 and the lower sign if
x(0)> 0. Thus
x(0 n ..
ay p and o = +2 if x(0)<0
-3 if%(0)>0
() we write x = Re A e P07 A = gje'®
Then x=v,=Re (-B+iw)Ae Prriv
From v, (0) = Owe getRe (-B+iw)A =0
This implies A = + i(8+iw)B where B is real and positive. Also

Xp=ReA =% wB

| x|

Thus B = o with + signinA if xy<0
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- signinA if xp>0

So A-tiM|x0|-(T1+tLE)|x0‘
® ®
Finally ay = 1+(%) | x|

tana = :-Q, a = tan'l(—-—ﬁ)
® ®
o is in the 4® quadrant (— §<a < 0) if x,>0 and o is in the 2*! quadrant

(%<a< n) if x9<0.

470 x = age Plcos (wt+a)

471

Then (x).0=-Bagcosa-waysina = 0

or tana=-£-.

Also (Jc),_o==aocosot=-a—ll
secla = nz, tana = - 'r|2—1

Thus B=owVni-1

(We have taken the amplitude at ¢ = 0 to be ag ).

We write x = age P* cos (wt+a)
- ReAe_ﬁ”im‘,A - aoeia
x=ReA(-B+iw)e Prtivt
Velocity amplitude as a function of time is defined in the following manner. Put ¢= £+,
then
X = ReAe—B(toﬂf) eim(to+t)

- ReAe'p"’ e'Chtiot ReAe-p“’e“M

1 . . . . . -
for T < < 5. This means that the displacement amplitude around the time ¢, is @ge % and

B

we can say that the displacement amplitude at time ¢ is a, e P Similarly for the velocity
amplitude.
Clearly
(a) Velocity amplitude at time ¢ = aoV B+ 0® e P*
Since A(-B+io) = qpe'®(-B+iw)
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= ao\/-Bz-l-—w2eiy
where y is anotner constant.
) x(0)=0=>ReA=0 or A==zxiq
where a, is real and positive.
Also v,(0) =x9=Re + iay(-B+iw)
=¥ wa
Thus g, = Lz%l- and we take - ( +) sign if x; is negative (positive). Finally the velocity

amplitude is obtained as
X T
—' Ol ;32+co2 e P,

4.72 The first oscillation decays faster in time. But if one takes the natural time scale, the period
T for each oscillation, the second oscillation attenuates faster during that period.

4.73 By definition of the logarithemic decrement (k = B 2—(:—) we get for the original decrement

Ao
2R 2nnf
N = B—7=———= and finally A =
Vii-¢ Voi-np
M/27
Now ___ﬁ____gﬁ or _E.,______
‘/wg_ﬁz 2rn W / M 2
1+(—)
2n
)
2w 2n
) ‘\/____2_- -
A Ao
14| — ke N
A niy/2n
Hence — =
2 2
\/1_(,,2_1)(13)
2n
For critical damping Wy = n.p

4.74 The Eqn of the dead weight is



mx +2Bmx+mot x =mg

g 2 g
SO Ax = — or Wy = —.
2 " Ax

Wo

Now )\‘_Znﬁ_, 2xp

o
or —_—— =
© Vi Vi -

Thus _2x _ 2= V1+(—)

M
T - - -
Vai-g2 ™ 2n
2
=2x \/% \/1+(§1‘;) =\/~A§’£(4z€+)ﬁ) = 0.70 sec.

4.75 The displacement amplitude decrease 7 times every n oscillations. Thus

2x

L e_s..?.,,
n
or 2278 _ 1y or £ lnn
(0] o 2nn
® nn
So Q-zﬁ-lnn~499.
476 From x =age P'cos (wt+a ), we get using
(x).o=1=aycosa
0= (x),.0=-Pagcoso-waysina [
) 1

Then tana = B
®

or wsa-——w\/—_ﬁ—? ¢
.‘/ 2 2 t
I—-—%—i e P’ cos((n)t-tzm’l g)

and x =

2 0]
Total distancé travelled in the first lap = /

To get the maximum displacement in tht second lap we note that

X = [—BCOS(mt-tan"l-E)—msin(mt-tan"lﬁ)]
. @ @

IAY 0)2+ﬂ2 -Bt
X —e

w

x=0 att = -(i— gnn+£+ tzm'lﬁ

=0

when wt=x,2x,3x,... etc.
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Thus Xmax = —dge PP cosa = - 1e ™ for t = n/0

so, distance traversed in the 2°d lap = 27 "F/®
Continuing total distance traversed = [+2 e “P® 421 270, .

g 2l 21
= "'1 P = +eB1|:/(o_
=I P +1 11+e;‘/2

-1 eM -1
where A = 2—::)-E is the logarithemic decrement. Substitution gives 2 metres.

4.77 For an undamped oscillator the mechanical energy E = %m? + %m m?, x? is conserved. For

a damped oscillator.

X = aoe'p'cos(o)t+a), o=VYw-p

and E(t)-—mx2+ ma)ox2

1 -
=-2-ma o€ 2"'[Bzcosz(mn-oz)+2f5cocos(mt+01)x sin(mt+a)+m2sin2(a)t+a)]

+;ma(2,moe’2”'cos2(o)t+a)
= %maom2 '25’+%ma(2,f52e'2“'cos(2mt+2a) +%ma(2,ﬁ(oe'28‘sin(2(ot+2a)

If B <<w, then the average of the last two terms over many oscillations about the time ¢

will vanish and
<E(t)> = -;-mao(ooe"“'

and this is the relevant mechanical energy.
In time t this decreases by a factor %so

e'"‘-% or ‘t=m

28 °
-nn
p 27
2 .
and ‘/i 2x - 2x - since (0(2, = §-
“00 ﬁ v 0)0 V“g‘[z_l
llnzn
1 2
and Q=f=_ ig——l..lao
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4.78 The restoring couple is

4.79

I''=-mgRsing « -mgRo

The moment of inertia is
3mR?
I = >
Thus for undamped oscillations
2
3mR Q+mgRep =0
2

so, mﬁ = 3—)%
Also A = 2n B 2n B

2 __wo_-\/—i__x:)T

Hence ——;L-—{-zn or = 1+
Vagy-f V-

Hence finally the period. T of small oscillation comes to

2 Dy V(e ()

3R 2,22y o
28(47; +A°) = 0.90 sec.

Let us calculate the moment G; of all the resistive forces on the disc. When the disc rotates
an element ( 7 d r d 0 ) with coordinates ( 7, 8 ) has a velocity 7 @, where @ is the instantaneous

angle of rotation from the equilibrium position and r is measured from the centre. Then
2n R

G, =fd9fdr-r-(F1x r)
0

4
nrerdyx2n = naR_.

o%h

) P
R2
Also moment of inertia = >
2 4
Thus mR ¢.+nnR p+og =0
2 2
2
anR”. o -
o1 P +2 om @t qu:» 0

2
Hence w(z, = 21(:2 and B = Nk
m



2

2
and angular frequency 0 = v 20 )\ (x9R
mR 2 2m

Note :- nommally by frequency we mean 2% .

4.80 From the law of viscosity, force per unit area = 1 =
so when the disc executes torsional oscillations the resistive couple on it is
R 4
-fn-2:rrr. r—}?-r-dr X2 = Il—%—R—-q)
0

(factor 2 for the two sides of the disc; see the figure~in the book)

where @ is torsion. The equation of motion is
4
16+ 288 gicp a0

Comparing with P +2Pp+map = 0 we get

p=mnaR*/2nI
Now the logarithmic decrement A is given by A = 7, T = time period
Thus n =2MhI/xRT

4.81 If ¢ = angle of deviation of the frame from its normal position, then an e.m.f.
¢ =Bd¢
2 .
is induced in the frame in the displaced position and a current 18_2 = B% flows in it. A

couple

24 2 4
B%.B.a.asB a

?
then acts on the frame in addition to any elastic restoring couple ¢ . We write the equation
of the frame as

.. 2 4-
Igp + R e+cp =10
B*a*
Thus § = 21R where B is defined in the book.

Amplitude of oscillation die out according to e P! 5o time required for the oscillations to

1 . .
decrease to -; of its value is

| ==
]
"i.i“
~
a‘_w
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4.82 We shall denote the stiffness constant by x. Suppose the spring is stretched by x, . The bar
in then subject to two horizontal forces (1) restoring force — k x and (2) friction kmg opposing
motion. If

xo>£c—'-:-g- =A

the bar will come back. «X—

(Ifxps A, the bar will stay put.) ﬁm&g& 00

The equation of the bar when it is
moving to the left is

mx = -xx+kmg
This equation has the solution

x=A+(xy-4) cos‘\/ % t

where we have used x = xp,x = 0 at t = 0. This solution is only valid till the bar comes

o -2/ E

and at that time x = x; = 2A - x,. if xy> 2 A the tendency of the rod will now be to move
to the right .(if A < xq < 2 A the rod will stay put now ) Now the equation for rightward motion
becomes™

to rest. This happens at

mx = -xx-kmg
( the friction force has reversed).
We notice that the rod will move to the right only if
K(Xg-2A)>kmg ie x3>3A
In this case the solution is

1/k
x=-A+(xg-3A) cos ;t
. . / k
Since x=2A-xpand x =0at t=¢ ==x m

The rod will next come to rest at
1 / k
=1 = 27!/ m

and at that instant x = x, = xy — 4 A. However the'rod will stay put unless x> 5 A.
Thus

(a) time period of one full oscillation = 2:1:/ V ;nk—

(b) There is no oscillation if 0 <xp< A
One half oscillation if A<xg<3A
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4.83

4.84

2 half oscillation if 3 A <xyg<5A etc.
We can say that the number of full oscillations is one half of the integer n
Xo-A
2
where [ x ] = smallest non-negative integer greater than x.

where n=

The equation of motion of the ball is
m(x +wix) = Fycosmt
This equation has the solution

x =Acos(wpt+a)+Bcoswt

where A and o are arbitrary and B is obtained by substitution in the above equation
Fo/m

wg - w*

B =

The conditions x = 0, x = O at ¢ = 0 give

F
Acosa+—— =0 and -wpAsina =0
Wy -
Fo/m Fy/m
This gives a = 0, A=- 20/ 5 = 20/ 5
Wy - W W -0y
Fyo/m
Finally, X = % (cosmyt~cosmt)
® - Wy

We have to look for solutions of the equation
mx +kx =F,0<t;<7,

mx+kx=0,1>%
subject to x (0) = x(0) = O where F is constant.

The solution of this equation will be sought in the form

x = {-+Acos(coot+a), O<sts~x

x =Bcos(wy(t-1)+P), t>71
A and o will be determined from the boundary condition at r = 0.

0-{-+Acosa
0 =-wyAsina
F F
Thus a=OandA=—-; and x-;(l—coswot) O0st<m.

B and B will be determined by the continuity of x and x at t = 7. Thus
x F .
k(l-cosmot) = BcosP and ;60 FsinwT = -;1)0 B sin B
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F 2
Thus B2=(;) (2-2coswpyt)
F W T
or Bszk sin 2

x(t)

/N
%

4 f——————

485 Fou whe spring mg = x Al

where «x is its stifness coefficient. Thus

- &
Al°

3=

wg =
The equation of motion of the ball is
. .2 F,
x+2fx+mgx = ;coscot

Here Nom—2%B B M2m
Voi-p2 @ Vis(a2n)
To find the solution of the above equation we look for the solution of the auxiliary equation

. . Fy
z+2f53+w§z--;l-e”‘"

Clearly we can take Re 2 = x . Now we look for a particular integral for 2 of the form
Z = A eimt
Thus, substitution gives A and we get
(Fo/m ) elmt
o)% —w?+2i fow

so taking the real part
(Fo/m)[(mg—mz)ooswt+2f5msinmt]

X =
(-’ Y +4pa’
'F cos (wt -@) ¢ = an-! 2w
m ’ mg-mz
\/\w - ) +4B

The amplitude of this oscillation is maximum when the denominator is minimum.

Tthis happens when
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4.86

4.37

0'-20j0’+4p20’+0p = (0’ -0z +2p%)+4p2wi-4B* is minimum. ie for
o = of-2p>

2
Thus w,z,,-m%(l-lg-)
o
A\ Y
2\ 2= 2=
-8\ & \"F)
2
Al . ALY Al - A
+ n 2x
and Fo/m Fo/m Fym )
a,,- - - o —
T Vapai-apt 2pVap-p2 2P 27
A\
14—
Fy 2n _Fy Al 1 912
2mwi M2=m T 4nmg * 22
. Fo/m
Since a =
V(?- o} +28°) + 467 (wi- B%)
we must have - mf—m¢2,+252-—(m§—w3+2{32)
2, 2
W]+ ©
or m%-Zﬁzs 12 2-0),2”
En(mg-mz)coscot+2ﬂmsinmt
m ‘/(mz_m%)2+4ﬂzm2
Fyo Zﬁmcoso)n(mz—o)g)sinwt
Then = 2_ 2.2 2 2
m (g-0°)" +4p°w
Thus the velocity amplitude is
F,
Vo- —
m\/(mf,—mz)z-n-4ﬁz(o2
F,
= 2
‘/ 2
Wo _ 2
m (0) (o) +4p
This is maximum when o’ = wg = wf‘,

and then Vores = ImpB"



ws ’
Now at half maximum (—(Sq - w) =12 B2

or o+ 2\/_3—|3m-wg=0
=+ ﬁ\/? +V wﬁ+3[52
where we have rejected a solution with — ve sign before there dical. Writing
o, = Vo) +3p? +|3\/? , 0y =Vop+3p —Bﬁ

we get (a) w,, = Wy = V w; 0wy ( Velocity resonance frequency)

b B = lo1-w| and damped oscillation frequency
2V3

2
Vot - Vo @o)

12
4.88 In general for displacement amplitude
F, 1
a=—
m AV (w?-w?)+4p0?
F, 1
™V (0 - w+26°)+ 48 (0f - )
By w5 5
How V4B (wp-PB°) 2BV wp-B
B B A2m A B
ut ———, o =
1) V1+(7\./27t)§ 2m mz—ﬁz
A\
2 1+ x
@ A _1 -
Hence = 2(32 2w =2 * 2.90
2n

4.89 The work done in one cycle is
T T

A =dex ={det ={Focosu)t(-masin(mt-cp))dt

T

-fFoma(-cosmtsinmtcosm+coszwtsin(p)dt
0
1

T . .
= EFoﬂ)aES“NP = naFysing

51
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4.90 In the formula x = acos (wi-@)

4.91

4.92

Fy N
we have a=— -
mV (0f- oY +4 o
2fw
tangp = ————
¥
2 2
wg - t
Thus ﬁ=( 0 ;om) an @
Hence wy = VK/m =20 s

and (a) the quality factor

n Vwp-p lv 40’ wf

TBT - 2B =2

(b) work done is A = ma Fysing

=ama*V (0t -0+ 42 0? sing = tma’x2Bpw’
= Jtmaz(w(z,-w2)tancp = 6ml.

2w

wg - 0

Here as usual tan ¢ =

where @ is the phase lag of the displacement

F, 1
x=acos(wt-¢), a=—

" \/(0)(2,—(02)2+462m2

(a) Mean power developed by the force over one oscillation period

n Fyasin @ 1F .
= T = SFawsing

_F% B v’ FiB 1
m

m (mg—m2)2+452m2

5 2

o
—_o| +4p
®
(b) Mean power < P > is maximum when o = wg (for the denominator is then minimun
Also

P Fg
Pmax = 4mp
Given B = wy/M. Then from the previous prol;lcm
Fio
P> = 0%, 12

n (wa ) 0}
— - +4——5
w n
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At displacement resonance @ = V 0)(2, -2 Bz

. R 1 Foo 1
>res = 2 7= 7, 4 7
nm 48 4wy nm 4 wy/M Wy
P 2B2+_2 7. 2\t .2
o~ n wi1-=5 n
n
__F n____ Fon y’-2
4nmwg 21 ol dmwy -1
n'-2
. Fozfl
while <P > ., = dmog’
<P >p.x-<P >
Thus == = = 200 %
<P>mu mn -1
.. . N, t
493 The equation of the discis ¢ +2P ¢+ wig = —"'-C—Io—si)—
Then as before ¢ =@ucos(wt-a)
where O = N tana = 2B
S T B T i 0 -’

(a) Work performed by frictional forces
T

= -fN,d«p where N, = -=2IB¢ = —f2[31(i)2dt = -2nBowlgl
0

= - nlmi[(mg—w2)2+4ﬂzw2]w sina = -ntN, @, sin a

(b) The quality factor

x an Vo-p B oV w; - g _ 1 [ 40’ wh 4 8% w? ]

172

Q_X-_-B_T_ 2B _(m(z,—w2)tana T 2una ((og—w2)2-(w3—m2)2
172
40?0 P o? N
S S L L since w2 = w?+—" cosa
2tanc | N2 cos’a Ton
172
_ 1 4002(0%12‘131_ sin® a
2sina N2 ’
12
1 40°PqL ( , N,cosa 2
= 2] o+ +1~cos”a
2sina N, Iy,
2
12
1 412(p3, s Mo, , 2 1 ’21(p,,,u)2
B 5w + w“cosa+cos“a-1 = +cosa | -1
2sina N, N, 2sino N,
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4.2 ELECTRIC OSCILLATIONS

4.94 If the electron (charge of each electron = - e ) are shifted by a sman distance x, a net + ve
charge density (per unit area) is induced on the surface. This will result in an electric field

E = nex/gy in the direction of x and a restoring force on an electron of
2

ne‘x
€
2
. ne'x
Thus mx = -
€9
. né
or xX+—x =0
mﬁo
n e 16 -1
This gives W, = —— =1.645 x 107 s
L4 megg

as the plasma frequency for the problem.

4.95 Since there are no sources of emf in the circuit, Ohm’s 1 law reads

q dI

¢~ lta
. dq .
where g = change on the capacitor, I = ar - current through the coil. Then
L9, 0tg=0, 0 =L

dt2 LC’

The solution fo this equation is
q = gncos (wot+a)

From the problem V,, = Im . Then

C
I=-0yCV,sin(wpt+a)
and V=V,cos(wyt-a)
P 2
Vis =,
w% c? "
2 LP _ o
or Ves -E,— = VM .
1,p, 49
By energy conservation ELI + Yolu constant
When the P.D. across the capacitor takes its maximum value V,,, the current J must be zero.
Thus "constant" = —;-C V,z,,
L

Hence +V? = Vj once again.

c
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After the switch was closed, the circuit satisfies

14l _4a

d C
or %+m§q-0=q-CVmcosmot
where we have used the fact that when the switch is closed we must have

V-%-V,,,I-%-Oatt-ﬂ.

Thus (a) I-%tq--r'-CV,,,coosinwot

‘/C .
= -V, Lsmu)ot

(b) The electrical energy of the capacitor is 5% a cos’ gt and of the inductor is

%L Pasin®wyt
The two are equal when

(Dt=£
0" " 4

At that instant the emf of the self-inductance is
di
-L-dt— = Vycoswgt =V, /V2

In the oscillating circuit, let
q=qg,coswt
be the change on the condenser where

2

® and C is the instantaneous capacity of the condenser (S = area of plates)

L)
y

y = distance between the plates. Since the oscillation frequency increases n fold, the quantity

2y
O = eSL

changes n2 fold and so does y i.e. changes from yj initially to n2 yo finally. Now the P.D.
across the condenser is

-l
LC

m Y m
V= Ccoso)t- .~ cos ® ¢

and hence the electric field between the plates is

dm
E = 80Scosa)t



Thus, the charge on the plate being g,, cos w ¢, the force on the plate is

In 2

F-—cos ot

Since this force is always positive and the plate is pulled slowly we can use the average force

%

F=3es
and work done is A= F('I Yo - )’o)'(ﬂ2 1)2‘12:)’;
But q2 Yo _ qz = W the initial stored energy. Thus.
268~ 2C,

A= ('r] -1)W.
4.98 The cquations of the L — C circuit are

C,V-{ Ldt C,V-|Ladt
Li(jﬁz)-_l__i_l__-_z__'_f_z__
dt C C2
Differentiating again L(L+h) = - 1 I = - = [2
G G,
2
Then Il C1 I 12 C1+C2 I
I = Il+12
$O L(C1+C2)I+I =0
or I =Isin(ogt+a) 1
A A
where p = ITC—IIE—) (Parta) L Sw _J_I_.z
1+C2 G == L, = 02

(Hence T = ix | 0.7 ms)
Wo

At t=0,I=0soa=20
I = Iysinwgt
The peak value of the current is I, and it is related to the voltage V by the first equation
LI= V—fIdt/(C1+C2)

or +L(1)0100030.)0t= V- roSln(l)otdt

Cl + C
(The P.D. across the inductance is V at ¢ = 0)

1 Iy
=V+ Ci+ G, mo(cosmot -1)

-\/C c
Hence Iy = (C1+C)mgV =V 112 = 8.05 A.

L
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499 Initially g, = CV, and g, = 0. After the switch is closed change flows and we get

@1+q =CV
9 dl 942
C +L & C - 0 1)
Also I = ¢q, = -q, Thus I
LI+ Cc = 0
Hence f+oo(2,1 =0 = Z% , +Q1__.C C kg Q2
-a 1 -
The soloution of this equation subject to ‘i, ’qz
I=0att=0 iW/
o

is I=1I;sinwyt.

b/
Integrating g, =A- aq- cos wq ¢
0

Io
g, = B+— coswyt
Wo

Finally substituting in (1)

A-B 21,
—E,——--mo—ccosmot+LIomocosmot =0

cv,
Thus A=B= and

cv, I
2 + (O0))
cv,

=0

s0 q; = (1+cosmwgt)

cV
q, = —2-(1—cosa)ot)

4.100 The flux in the coil is

0 t>0

4

[ 1a

D(t) = {(I) t <0

. . dl o
The equation of the current is -L & - C (6]
2
This mean that LC-d—g +I=0
dt
or with co%:-L I = Iysin(wg?1+ o)

LC
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4.101

4.102

bf
Putting in (1) -LIywycos(wpt+a) = ~ (oOC [cos (wgt+a)- cosa]
0
This implies cosa = 0 .. I = = Jycos wyt . From Faraday’s law
dd dl
=-w -l
or integrating from t = — € to ~ € where ¢ — 0

® = LI, with + sign in /

o
s0, I--I:-cosmot.

GivenV = V,, e P coswt

(a) The phrase ‘peak values’ is not clear. The answer is obtained on taking [cosw t| = 1

s nn
l.e t=—.
w

(b) For extrema %}{ =0

-pPcoswr- wsinwt =0
or tanwt = - f/w

ie. ot =nn+tan"! (—-:)-E)

The equation of the circuit is

2
422, Rd2 . 2
dt2 dt o

where Q = charge on the capacitor,

This has the solution Q=0,ePsin(or+ a)
R Va2 _ g2 o2 1
where |3=ﬁ,m= wy = B, 0p = 7o
Now Isig-o att =0
dt

so, O e P (- Bsin(wr+ a)+owcos(wt+ o)) =0 att=0
Thus wcosa = Bsina or a=tan'1-(-;—
Now V, = — and V=P.D.att=0=gﬂsina

™= C 0 c
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(gm means imaginary part)

4103 We write
—éd-‘te =] =1 e Bt sinewt
=gm 1, e Ptrior
Then
~Bt+ it
Q=emln B+ io
e-ﬂl+l’mt
Q=eml. 555
-gml, (B+ un)e'B” ot
B + o

=], e

-pt Psinwt+ o coswt

B2+ w

I e Bt sin(wt+ d)

2

tand = 2,

B

( An arbitrary constant of integration has been put equal to zero.)

Thus

Q. \/g,_ - Be g
C I, c ¢ sin(wt+ d)

V(O)-I,,,V% sino-l,,v!c‘,- #ﬁz
o+

L

=LYV s )

414 1= 1 e P sinwt

ﬁ-—,wo \/L—c-’“"‘/—“—

I=-q, q= charge on the capacitor
-prsin(wt+ d)

Then g=1,e , tand = —.
" W/w2+52
Thus WM=:,12-LI,,2, e P sin’wt

_Ii e 2P sin(we+ ) - LI} o 2Bt
2C (1)2+ 52 2

WE =

sin? (wt+ d)
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Current is maximum when Edt-e- Bt sinwt =0

Thus - Bsinwt+ wcoswt =0

or tan wt-%-tan&

i.e. wt=nn+d
W 2 . 2

and hence ML szm (wf) sn;& = 12
We  sin®(wr+ d) sin®28  4cos’d

1 wy 1 L2

L
- - Xy = T = 5.
4pYwy  ap* LC R? CR?

(W), is the magnetic energy of the inductance coil and Wy is the electric energy of t
capacitor.)

4.105 Clearly
L -L1+L2,R - R1+R2

4106 Q = = or P =—
Now Bt =Inm sot-l—l:t—']-QT
- 210 _ 45 ms
nv

4.107 Current decreases e fold in time

t = i - 2L sec = 2L oscillations
B R RT
2L o
R 2=
L 1 R? _1_\/_4__1:_ _
= %R 2 —_4L2 iy R2C 1 = 15.9 oscillations
n [0)
4.108 Q'ﬁT'zp
)
=280, p 20"
Now Wy = ® 1+-—1—5 or w= 20
40 1
1+ —
40
Wy~ @ 1

SO

x100 % = ——x 100 % = 0.5%
8Q



4.109

4.110

4111

At ¢t = 0 current through the coil = £
R+r

P.D. across the condenser = £
R+r
(a) Att = 0, energy stored = W,
2 2 L2
Ll () Lo tR) L 2(L+CR) _,0 05
2 \R+r 2 R+r 2 (R+ r)?

tR/2L tR/L

(b) The current and the change stored decrease as e~ so energy decreases as e
W= W, e ™ =010 mJ.

o-n.nv_o Voi-p
BT B 28 2p
(V)
or *ﬁ,-V1+4Q2 or 5-_____(@__.
p 1+Q2
Now W= W, e 28

Thus energy decreases 1) times in %‘.ﬂ sec.

Vi+49? omn
n 2 g ~ 3 xva sec. = 1.033 ms.

= In

In a leaky condenser
iQ-I-I' where I’-Y-leakcurrent
dt R
_g__gdl__,d(dg V¥
Now Ve ta " Llala*r
2
-_1%49_ L dq
dt? RC d:t
..o 1dQ 1 _
. 9*Rcar *1c?"?

Then g =qgue P'sin(ot+ a)
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4112 Given V = Ve P sinwr, o w 0 BT <<1
Energy loss per cycle

Power loss =

T
1 2
-ECV'X 26
(energy decreases as Woe ™ 2P so loss per cydle is Wyx 28 T)
1oy, R
Thus <P> = > CV, x 2
2<P> L
or R = V2 E

m
1L ¢ W .
Hence Q= R c " T 2<P> = 100 on putting the vales.

4.113 Energy is lost across the resistance and the mean power lass is

<P> = R<I?*> = %le- 0.2 mW.

This power should be fed to the circuit to maintain undamped oscillations.

RCV}?
4.114 <P> = 5L as in (4.112). We get <P> = 5 mW.

4.115 Giveng = ¢, + q; I B nLitl;
L=-q,L=-q A

R12=1 b

c’ pum—

LL

Thus CL g1+ (g1 + g) = 0
RC g+ g1+ g, =0

Putting ¢, = Ae‘®’ g, = Be*'®*
(1- w*LC)A+ B =0
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A+(1+ioRC)B =0
A solution exists only if

(1- @®’LC)(1+ ioRC) =1

or ioRC- 0*LC-i0’LRC? =0

or LRC?’0*-i0LC-RC =0
2_ .1 1
m-sz I 0

1

i 1
®=3Rc*VLCcT iR

[ ] lﬁt (O

Thus q = (Alcosm0t+Azsinmot)e‘ﬁ'etc,

oy is the oscillation frequency. Oscillations are possible only if u)% >0

ie I S o)
.e. TR
We have . ]; Iz
Ll Il+ RlIl =L2 12+ Rzlz I < > 1
[rar M
= - ——&-—

Ri,L = R, L
I=5L+1 b 22

Then differentiating we have the equations
LIC Il'f' RICI]_ + (11'1' 12) =0
L,C I+ Ry CL + (I1+ L) =0

Look for a solution

I = A e*, I, = Ay e*'
Then (1+a2L1C+aR1C)A1+A2=O
A+ (14 &> LyC+ aR,C) Ay = 0
This set of simultaneous equations has a nontrivial solution only if
(1+ a’L,C+ aR C)(1+ a’L,C+ aR,C) =1
or o+ o LiRy+ L2R1+qL1+ L+ R1R2C+R1+R2
LL, L,L,C L,L,C

This cubic equation has one real root which we ignore and two complex conjugate roots. We
require the condition that this pair of complex conjugate roots is identical with the roots of
the equation

=0

o?LC+ aRC+1 =0
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4117

The general solution of this problem is not easy.We look for special cases. If R; = R, = 0, tha

L,L,
R= OandL-

If Ll -L2-0 then
+Ly"

L=0and R =R,R, / (R; +R;) .These are the quoted solution but they are misleading.

We shall give the solution for small R;,R, . Then we put o = — f§ + i ® when f is small

We get(1-m21.1c-2i3m1.1c-Bflcnmklc)

(1-0?L,C-2ipwl,C- 3,(2C+ iwR,C) = 1

(we neglect B & BR;, PR, ). Then

2 L+ L,
L,L,C

(1- mzLIC)(l—co2L2C) =1 =0

L,L
C .. . . 2 142
This is identical with ® L_C if L = L+l

also (2BL;- Ry)(1- @’L,C)+ (2BLy- Ry)(1- 0?L,C) = 0
R R\L?+ R,L} CRL]+ R,L]

This gives f = 2L 2L, L,(L,+ Ly) -os (L LY

q . dlI d
o=+l + RI,I=+5L C L 0

\/— — F—900 ——990-
For the critical case R = 2

.. . Sw,
Thus LC g + 2VLC g+ q =0 a/c

Look for a solution with ¢ o e*’

1

Vic’

An independent solution is te®’ . Thus

= (A+ Bt)e"/“c,
At t=0g=CV, this A = CV,

Also at t=0g=1=0

0=B-A——=p=vV&

vic L



Thus finally 1-4.y,VE e-t/VIC
1 \/ ) -./m
W(CVO-O- Vo L
LYo, iz

The current has been defined to increase the charge..Hence the minus sign.
The current is maximum when

d Yo T 4

dt - - L e 1 - \fL_C—) 0
This gives ¢t = VLC and the magnitude of the maximum current is

Ve ,
|Im|x| = _0 Z'

4118 The equation of the circuit is ( I is the current)

L %TI + RI = V,cosmt
From the theory of differential equations
I = I P +IC

where Ip is a particular integral and I- is the complementary function (Solution of the
differential equation with the RHS = 0 ). Now
I = I e™***
and for Ip we write Ip = I cos(wt-@)
Substituting we get
Vm 1

I, = ——————, ¢ = tan~

ol
R?+ @?*L? R

|2
Thus I, = d cos(o)t—(p)+1coe'”w‘
Q R?+ 0*L?
Now in an inductive circuit I = 0 at ¢t = 0
because a current cannot change suddenly.
Ve

Thus Icp = ~ ————="co0s Q@
VR?*+ 0’L?

and so
-tR/L ]

Vi
[ = —\/_;—2__.,_—_-—“)21‘_2 [cos(mt- @)-cospe
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4.119

4.120

Here the equation is (Q is charge on the capacitor)
g--t- R % =V,cosmt

A solution subjectto Q = 0 at ¢t = 0 is of the form (as in the previous problem)

Q = Qn[cos(wr- )~ cosFe ]
Substituting back

%"cos(mt— 9)- oRQ,sin(wt- )

=V, cosmt

= V,[cosPcos(wt- §) - sinFsin(wt- §)}

s0 QO =CV,cos¢

oRQ, =V,sing
This leads to

cv, —
Op = ——=————o, tan ¢ = @RC
Vi+ (0RC)?
Hence
Ist—i-Q—= V,.. —Sil‘l((l)t—_)‘}"_MSZ— e_‘/RC
dt ¢ sin @

1 2
2 ——

R+ (u) C)
The solution given in the book satisfies / = 0 at r = 0. Then Q = 0 at ¢t = 0 but this
will not satisfy the equation at ¢ = 0. Thus /= 0, ( Equation will be satisfied with 7 = 0

only if Q= 0 at t = 0)
v,

With our J, I(t-O)-Tm
The current lags behind the voltage by the phase angle
-1 wl
= ta —_
¢ n R

Now L = pg n2 ma®l, 1= length of the solenoid

R = BM , 2b = diameter of the wire

nb?
But 2bn =1 b-L
2n
2 2
_ _1 Mon“lma“-2mv 1
Then @ = tan S awanl % n4n2
2
a
- gl Mo av

4pn
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4122

HereV = V, coswt
I =I,cos(ot+ @)

Vm 1
where I, = - = tang = RC
2, [—
R+ (mC)
2
1 v,
NOW R2+—————5- =
L V()
oRC RI,

Thus the current is ahead of the voltage by

-1 1

® = tan oRC

t
f1d:

-0
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Here VelIR->+ o
Rt e
or RI+ =I=V =-oVysinot
© c==v
Ignoring transients, a solution has the form
I=[sin(ot- a) e —————
I
(nRIocos(mt-a)+é’-sin(mt—a)-—0)Vosin(ot
= - @Vysin(wf- a)coso+ cos(wr- a)sina}
so RIO-—VoSin(l
I, -1
wc-—Vooosa a=n+tan” (wRC)
Vo
Io= ) =
V 2
R +(_mC)
I = Iysin(wt- tan ~? wRC-n) = - Isin(wz- tan ~? oRC)
t

Then

It satisfies

I,
Q -fIdt = Qo+ --‘lcos(cot—tan'1 oRC)
0 0

a9 2
Vo(l+ cosmt) Rdt+C
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if Vo(1+ coswt) = - RIysin(wt- tan @R C)
Q,
+ C+mccos(o)t-tan mRC)
Thus Qo‘CVo
and —-VO/V1+(0)RC)
h
RI, = VooRC checks
Vi+(oRC)
Vi
Hence V'-%-Vo+-—————g—-———cos(mt—a)
V1i+ (oRCY
Vo Vo
® 5 = -
Vi+ (wRC)
or *r|2—1-=m2(RC)2
or RC=Vi-1/w =22 ms.
4.123 V
Ve R
] '_\_/_R___ VIR oltage VLR

cyrrent

VoltageV
VRoCurrent g
(a) ®)
1
ol - —
() tang = _R_coC_ = —ve
2, L
as o <7
Vm
4124 (a) I, = = 4-48 A
2 1
R +(mL— a)C)
1
ol - —
(b) tanq>=-—Rm£,,(p- - 60°

Current lags behind the voltage V' by @



‘y IM 055]‘,
© Ve wC
Vig = Ip R*+ 0’L? = 0-5kV

1 17
A28 () Vo m — m

\/R2+ (mL- —1—)2

oC
V. Vo
B 2 2 2 = 2
V(oRC)P+ (0*LC-1) \/ 2 2 2 4
—-1] +4f 07w,
Wo
Vin
2
2 2 2 4
V(g 8), 2 u
g 0y Wy Wy
This is maximum when o = w2 - 2[32 - L_ R’
! 0 IC 312
oL
(b) VL'ImmL 'Vm >
'\/ 2 1
R +(mL _mC)
VL v, L
- 2 = T
R? 1 'Jz 1 (2L 2 1
—+ |L- L - = -R
w? ( ? ) mz(c ) o* C?
V.L
2
\/ - -8 + L% (L- Lcr?
o C 2
This is maximum when
1 1 2
——=L- >CR
o’ C
or w? = 1 1
= )
Lc- Lc2R? _15_2_3_
2 o 0)3

69
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4.126. v, =1, \/R2+ L2
VeV R?+ 0?L?

2

\/R2+ (mL— -1—-)

ol

for a given o, L, R, this is maximum when

1 1
—— =wl or C = —— =282 uF.
w?L H

oC
For that C, V, = R* ®  avV1+ (0L/R): = 0540 kV
At this C Veu L Yn Yuol o5 v
s c"wC R~ R "
4.127
0o C 0O I-1’
— e
O ¢ 0O I
0 Poor Condo | —
0O 00 © L AN
We use the complex voltage V = V,, e'®" Then the voltage across the capacitor is
, 1
(I-I')35c

and that across the resistance R I’ and both equal V . Thus
V., ; .
I' = 72"—' e I-1"=iaCV, "'
Hence
VM . iot
I = 'l (1+ ioRC) e
The actual voltage is obtained by taking the real part. Then

v,
I= —1_2! Vi+ (0RC)? cos(mt+ @)

Where tang = ®RC

Note —> A condenser with poorly conducting material (dielectric of high resistance) be
the plates is equvalent to an an ideal condenser with a high resistance joined in p
between its plates.



4128 , 4L, [Ld dp
T c T2 g
dr, dI,
L= =, 2t
T 1274

from the second equation
Ly, = -Lyp 1y

LY. I
Then Ll-L—2-11+El-0
Thus the current oscillates with frequency
1
® = >
V Ly
ClL--—
4129 Given V = V,_ coswt \ _W,_]
I =11, cos(wt-p) L’R
where
Vin o\ o-
I, = =
Vi L
R +(mL—mc)
f1d [ sin(wt-9)
Then, Ve = c " oC
\%
- = = sin(wt- @)

V(1- 0*LCP+ (0RCY

As resonance the voltage amplitude across the capacitor

So —==n
CR*
VL 1. Vet
Now Q= CRE_ 4 =3
4130 For maximum current amplitude
Vi

I =
m v2 , 1 2
R+!\mL-;FJ



VM
L=— andthenI,,o-T
1, v,
Now _;'_.o_- d
R2+£_2_"-12
22
o°C
2
So n= 1+.(l:_lL2
(wRC)
n-1
ORC = ——
Vyl-1
2 2 2
Now Q-V L _l-v 1 _l-V-—n—_—iz-_l
crR?| 4 wRC| ™ a (n-1) 4
4.131 At resonance
- 1
wol = (0,C)" ! or wp = ,
0 (0 ) 0 V"i'—c—
d (o = 2
an =
m Jres R
Now -2 . Y - il
nR _\/ 2 v 1 2
2 - R+ |yl - ——
R +(m1L mlc) ( 2 @, C
Then o)lL—-—l—s\'n!—lR
(.01C
w, L - ﬁ =+Vn?_1R (assuming w, > w, )
(V) - - —_— = - - -
r wy o, (02+m2 n I
w2
or Wy + a)2='-——° (01+ @) = 0y = Vo0,
; W,
T R
and Wy— @ = n—lL
. R wmw
2L 2Vnri-1

and 0- Vb 1 _VE-Dow 1
apt 4 (03— w4



4132 Q = % ~ 36 for low damping.

1 RI,

or W- — =z —=22f
Thus .o)-o)otﬁ
s Aw =2p and Q = >
0 o =2pf an Q-Aw'
4133 At resonance W = W,
I Vm
m(wo)-R
. Vin
Then [I,(nowg) = =
Ve 1
R +(nwoL—nmoc)
Vm Vi
2, (no LY L 2, L\ (L) L
\/h(n-n) L Vie(@ ) -3

4.134 The a.c. current must be
I=IV2 sinot
Then D.C. component of the rectified current is
172
<['> = % f Ioﬁ sin w ¢t dt
0

17
=Io\/—2_2n{sm9d9
LV2

.1

Since the charge deposited must be the same

Ioﬁ L2 1)
Ioto='—n t or t=7——2—-

The answer is incorrect.
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4138 (1) I(t) -11‘? 0st<T
I(t+ T) = I(t)

Now mean current
T2
<1>-—f11 -11—/3-11/2

Then I, = 21, since <I > = I,.

Now mean square current </ 25 .

P 413

1 (1t 0

-41(?;[;_2_‘1‘:_?_
0

2]
so effective current = 7—.3—0- .

(b) In this case I = I; |sinw ¢

T
and Io--;—flllsinwﬂdt
0
2=z x
1 f _f
>m I | |sin0|d6 sin0d0
0 0
nl,
So I = >

., 2x )
T o [en?od0 - T0
0
so effective current = 1‘/_1_0 .
4136 p, . = %2‘
14 R vg /R
7=




4.137

4.138 p

4.139

Thus %s\/n-l

R
or m=ZVn-1

v = <L Vn -1 = 2 kH of on putting the values.
Z =VR?+X? or Ry=V 2% x?
X,

The tan 0 = ———

Vz? _x?

Vz? -XL2 '\/ XL 2

So cos =~ = 1_(2)

X, \2
p=cos 'V ;_ (7") = 37°.

The current lags by ¢ behind the voltage.
V2
also P=VIicosgp = — V2% - X} =160 kW.

PL
_ VZ(R+ r)
(R+ r)2+ w’L?
This is maximum when R+ r = w L for

P V2 ) V2
(oL [ —— oL |
R+r+R+r R+r-m + 2wl
2
Thus R = wL - r for maximum power and P, = 2:)]. .

Substituting the values, we get R = 200 Q and P_,, = .114 kW.
V2R

R*+ (X, - X )’

Varying the capacitor does not change R so if P increases n times

Z =VR?+ (X, - Xc )> must decreases V n times

P =

R . .
Thus cos@ = = increases V n times

% increase in cos ¢ = (\/—;— l)x 100 % = 30.4%.
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2
4140 P = —— VR
R%+ (X, - Xc)
1
At resonance X; = X, = - .
L c g LC
Power generated will decrease n times when
2

(X, - Xz ) = (u)L— 5%) = (n- 1)R?

:Vn—l%-tVn-lZB.

-

or
®
Thus szZVn—lpm-wf,sO
2
(mTVn- lﬁ) - g+ (n-1)p

L oVi+ (n-1)pYws + Vn-1 B/oyg

or
(taking only the positive sign in the first term to ensure positive value for o )
0

(B

=

®
Now = — =
Q 28 5
2 e V14402
B
Thus '& Vl 4Q) +Vn-1 /V1+4Q
For large Q
® - 0 _ﬁn-l_Vm—lxloo%-os%
(o) 2Q 20 ’
4.141 We have
VR VVRZ+ X}
Vi = 0 2" )
V(R+ R,)*+ X7 V(R+ R )+ X}

2 2
V,R

(R+ Ry Y+ X = (—‘:,R) , RP+ X} = (———‘2, )
1 1

SO
2 R2
Hence R°+ 2RR; = — (V -V )
vy
R, = viiovi-v?
1 2V12( 2 1)

or
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VER, vy viP  R?

Heat generated in the coil = = —xR = —=x — (V- V?2- V2
TRY S 25 A G TP TR - Vo)
vi-vi- v 30 W
2R B
4142 H 14 i
. ere I, = R’ V = effective voltage I
|4 I >
L= vVR2q+ x2
R+ X/
Vv 2 2 Vv R
and I=V (R+ Ry)" + X -—V- L1R
RVRZ+ X2 Ry
I

R g is the impedance of the coil & the resistance in parallel.

Now I~ 12 R%+2RR, (11)2 2RR,

Z " RI+xZ \L) R + X2
I~ 12-1} 2RR,
122 B R + X/
Now mean power consumed in the coil

V2R, 2 12-13-122_1

= IR, = R(I*-I}-1})=25W.

R+ X2 277 ar? 2
4431 11 1 . . _l+ieRC
Z R 1 R - R
ionC
|2 | = —F—— =400

Vi+ (0RC)?

4144 (a) For the resistance, the voltage and the current are in phase. For the coil the voltage is
ahead of the current by less than 90°. The current is obtained by addition because the elements

are in parallel.
Iz S axis of K

¥ Voltage 2 >
Io

I ,r I
@ ° ®)
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(b) I is ahead of the voltage by 90°.
(c) The coil has no resistance so I, is 90° behind the voltage.

A IC
Ir .
®

Io

\

1. ©

4.145 When the coil and the condenser are in parallel, the equation is
dI [La I

L—+RI = =V, coswt

dt c I 7 1
I=Il+12 l LR 1'7 fz

Using complex voltages V=Vm Cu”.ent =

—
V el(nt ) o
h=giger mioCVae T
and
1 . int _ |R-ioL+ unC(R + w’L?) iwe
1 (R+imL+t(oC)V,,,e -[ s olL° V, e
. Vo
Thus, taking real parts |Z ()] cos(wt- @)
2, 272 2
where 1 = [R + {mC(§ +20)2L1/2)- ol }*]
12 (w)] (R?+0’L?)
‘2. 272
and wmp=u)L-fnC(R + w°L”)

(a) To get the frequency of resonance we must define what we mean by resouance. One
definition requires the extremum (maximum or minimum) of current amplitude. The other
definition requires rapid change of phase with ¢ passing through zero at resonance. For
the series circuit.
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LlC at resonance. In the present case the two definitions do
not agree (except when R = 0 ). The definition that has been adopted in the answer given
in the book is the vanishing of phase. This requires

C(R?’+ 0?’L?) =1L

both definitions give w’ =

or o’ = 1 R—2 = o’ ® 31.6 x 10’ rad/s
L C L 2 res » res . .
Note that for small R, ¢ rapidly changes from =~ — g— to +-;— as o passes through
W,.s from < ®,,; t0 >, .
VR CR
(b) At resonance I, = i/c - Vi L

so I = effective value of total current = V Q{{ = 3.1 mA.

similarly I = =V V = 0.98 A.

C R2c?

[~ g7 =09%A

I =wCV=V

Note :- The vanishing of phase (its passing through zero) is considered a more basic
definition of resonance.

4.146 We use the method of complex voltage . S— ‘Q-R
V - V eiu)l
° 177 eimt l kc
0 . iot
Then I, = I =iwCVye vV C L,R
ioC T
I Voeimt
LR ™ R+iwl

R-ioL+ioC(R*+0*L? ),
R2+mL2

I = IC+ IL,R = Vo

Then taking the real part

VoVR?+[0C(R*+0?L?) - L)?
I = 5 o) cos(wt—-o@)
R°+w”“L
ol-wC(R?*+w0?%L?)
R

where tang =
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4.147 From the previous problem

R%+ 0?L?
¥4

VR2+ [u)C(R2+ w?L?)- wL}2

R?%+ 0%L?

\/(R2+ 0?L?)(1-20%LC)+ 0?CH (R + w?L?)?
R%+ w?L? VR?+ 0?L?

\/(1-2m2LC)+ w?C?(R%*+ w?L?) \r(l-szC)2+(u)RC)2

4.148 (a) We have

€ = - o _ o Pgsin w ¢ =LI+RI
dt
Put I=1I,sin(wt-9). Then

wPpsinwt = 0Py sin(wt- @)cos@+ cos(wt-9)sine}
=LIl,ocos(wt- @)+ Rl ,sin(wt- @)
SO RI,

0w ®ycosp and LI, = Pysing

o ®
or Iy=———-— and tang =2

VR 2+ o 2L 2 R
(b) Mean mechanical power required to maintain rotation = energy loss per unit time
1 1 ® 2 ':I)(,2 R

T
- T{RI di= SRIy = S5

4.149 We consider the force 17:2 that a circuit 1 exerts on another closed circuit 2 :-

ﬁz =§ 1,dl_;x FH

— —
Here By, = magnetic field at the site of the current element d I, due to the current I; flowing

in 1.
- 5
_ﬁ [ldllx 141)
- 4 r3
—> - — 12 . —
where 7, = r, - r; = vector, from current element d /; to the current element d [,
Now
—> - — - _, — —-
7 _ﬁf Il dl x(dlyx ) _ﬂffll dihi(dhrp)- (dl-dh)rp
12-47‘: 142 r?Z -47( 142 r?z

-
In the first term, we carry out the integration over d I, first. Then
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dl dl . — dl . —
ff 1( 2 12) f‘“lf z ) _fdllf d12 2rl -0
12

because f dlz-Vz—-l— =fd§; curl (V-—L) =0
ria i
'12
Thus Fp=-42 [[1n a-ai; 2 .

T2

The integral involved will depend on the vector @ that defines the separation of the (suitably
chosen )centre of the coils. Let C; and C, be the centres of the two coil suitably defined.
Write

—> - —> — — —>
rp=r-nrn=p-p1+a

— > . . > . — —>
where p; ( p, ) is the distance of d/, (d1,) from C, (C,) and a stands for the vector C; C, .

? —>» 1
12
Then - = - Vp —
i “ e
T
= = Uo 1°@45
and Fyp=V, | 11, z—j;ff —"_—12——
The bracket defines the mutual inductance L;, . Thus noting the definition of x
ale
<F,> <L I >

where < > denotes time average. Now

I = Iycos w ¢t = Real part of I, e'®*

. . , dl i,
The current in the coil 2 satisfies RI, + Lz-dT =-Ly ar
—i(Dle ior

or I = R+iol, © Iye " (in the complex case )
taking the real part

oL, ] ol
12=——2—L°—(mL2cosmt R sinwt ) = 2 Iycos(wt+@)

R+ o’L} R*+ @?L}
R N
Where tanp = Py Taking time average, we get
2

oLy, wLlly 1 o’ L,Lply aLy
<Fy> = axIO 2 52 2% = 2, 0212\ o
R%+ 0L} 2<R + 0 Lz) x

The repulsive nature of the force is also consistent with Lenz’s law, assuming, of comse, that
L, decreases with x.
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4.3 ELASTIC WAVES. ACOUSTICS

4.150 Since the temperature varies linearly we can write the temperature as a function of x, which

4.151

is, the distance from the point A towards B.

-T,
7 L, [0<x<]

i.e., T - Tl + T2
T,-T,
hence, dT = ( 21 ] ! ) dx (6]

In order to travel an elemental distance of dx which is at a distance of x from A it will take
a time

dx
di = — = @

From Eqns (1) and (2), expressing dx in terms of d7, we get

dr = l 1dT
oVT | -Th
Which on integration gives

t

T2
1 dT
[a- G(Tz‘T1)f\/—T

Or) (T2—T1)<VT2_VT1)
Hence the sought time ¢ = 2!
a(v Tl +VY T2)

Equation of plane wave is given by

E(r,t) = acos(wt-K-77), where F--(::—;z called the wave vector

A
and n is the unit vector normal to the wave surface in the direction of the propagation of

wave. A
y A 7
P (I;y)i)
Pr
0 > X
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or, E(x,y,z) =acos(wt-kx-ky-kz)

- acos(mt—kxcosa—kyéosﬁ-kzcosy)
Thus E(x1,¥1,21,t) =acos(wt-kx;cosa-ky,cosp—kz; cosy)
and E(x3,y2,2,t) =acos(wt-kxycosa-ky,cosp-kz, cosy)

Hence the sought wave phase difference

Q2= = k [(x;-x;)cos o+ (y -yy)cos B+(z-2)cosy
or Ap = |@-q| =k I [(11—152)0080‘*()’1-}’2)005ﬁ+(7-1'7-2)°°SY]I

[0

= Vl [(x1‘x2)005<1+()’1—)’2)0055+(21-7/z)008‘¥] I
4.152 The phase of the oscillation can be written as
®=wt-k-r
When the wave moves along the x-axis
P = wt-k,x (On putting k, = k, = 0).

Since the velocity associated with this wave is v,

We have k, = —
Vi
Similarly ky = — and k, = —
V3
Thus k-23,+mey+—ole3
Vi V2 V3

4.153 The wave equation propagating in the direction of +ve x axis in medium K is give as
E=acos(wt-kx)

So, E=acosk(ve-x), where k = -(:-:— and, v ‘is the wave velocity

In the refrence frame K’ , the wave velocity will be (v - V') propagating in the direction of
+ve x axis and x will be x'. Thus the sought wave equation.

E=acosk[(v-V)t-x']

or, E= acos[(m—QV)t—kx']-aws[wt(l-z)-kx’]
v ‘ v

4.154 This follows on actually putting

E=f(t+ax)
. . IE 1 F g
in the wave equation
9 ¢ Vo

(We have written the one dimensional form of the wave equation.) Then

sz”(t-rax) = azf"(t+ax)
v .
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4.155

4.156

so the wave equation is satisfied if
a=2i
v
That is the physical meaning of the constant o .

The given wave equation
E = 60cos(1800¢- 53x)
is of the type
E=acos(wt- kx), where a = 60x 10" °m
® = 1800 per sec and k = 5-3 per metre

As k=2Z s n .22

and also k-g, SO V=2 2340 m/s
v k

(a) Sought ratio = % = ;—E =51x107°

(b) Since & = acos(wt-kx)
%—? = -qgosin(wt-kx)
So velocity oscillation amplitude

(%—?) or vy, = aw = 0-11 m/s Q)
m
and the sought ratio of velocity oscillation amplitude to the wave propagation velocity
Vm 0'11 -4
=3 " 340 - 32x10

(c) Relative deformation = %—E =aksin(wt-kx)

So, relative deformation amplitude

-(‘;—3) -ak=(60x10"5x53)m = 32x10"* m )
m

From Eqns (1) and (2)
(35). 7o+ = 5= (5)

ax Tvat

Thus (%—E‘) - % (%—?) , where v = 340 m/s is the wave velocity.
m m

(a) The given equation is,
E=acos(wrt-kx)
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So at t=o0,
E =acoskx

Now, £1—§--»amsin(cot—kx)
dt
and d—g-awsinkx,att-o.
dt
g | in(wt-
Also, dx +aksin(wt-kx)
and at t =0,
a8 = —aksinkx.
dx

Hence all the graphs are similar having different amplitudes, as shown in the answer-
sheet of the problem book.

(b) At the points, where § = 0, the velocity direction is positive, i.c., along + ve x — axis in

oo . dg .
the case of longitudinal and + ve y- axis in the case of transverse waves, where a8 is

dt

positive and vice versa.

For sought plots see the answer-sheet of the problem book.

4.157 In the given wave equation the particle’s displacement amplitude = ae™'*

Let two points x, and x, , between which the displacement amplitude differ by n = 1 %

So, ae ' —ge T2 u .nae—-yxl
or e "i(1-m) = e '™
or In (1-m)-yx = - yx,
or, xz_xl__lngly_nz
So path difference = - M—ly—'n-l
: 2n .
and phase differencl = 5. X path difference
2xln(1-v) 2=mm _
N Y - 0-3 rad

4158 Let S be the source whose position vector relative to the reference point O is 7.
Since intensities are inversely proportional to the square of distances,



Intensity at P(I;) d&
Intensity at Q (1) - ?1
where d; = PS and d, = QS.

But intensity is proportional to the square of amplitude.

2
a

So, —=— or aid; = = k(sa
22 14 = azdy (say)

Thus dy =% and dy = £ P S q

a; a
Let n be the unit vector along PQ directed from P to Q.

d A k A —p
Then PS =din=—n —> pog
! a T T 1:1
—y
and SO =dyn = L1
a;
From the triangle law of vector addition. 0
—> —> —> — A
OP +PS =0 or r1+a£n=?
1
or a171.+k:3 -ayr 1)
Similarly ;'_:-;k—;! =r, or az?;-k;t =a,r ?2)
2

Adding (1) and (2),
— — —
an+ a2r2-(a1—a2)r
— —
—_ ayntan

Hence r=
a, + a,

4.159 (a) We know that the equation of a spherical wave in a homogeneous absorbing medium

of wave damping coefficient y is :
Em=

Thus particle’s displacement amplitude equals

aloe-Yl‘

" cos(wt-kr)

age '

r

According to the conditions of the problem,

aroe—yro )

at r=ry, g = ——— 6]
To
a() apo—yr

@

and when r=r, — =
n r
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Thus from Eqns (1) and (2)

T
eT("’o) = 0
n r

or, Y(r-rg) =In(nrg)-Inr
Inn+Inrg-Inr -
or, y = n o—In =ln3+h\5 ln10=0-08m'1
r-=rg 5
age
(b) AsE = °r cos (wt-kr)
' -yr
So, 98 | %o osin(wr-kr)
at r
’ -Yr
(é_’é) L LIREN
at r
n
. age™" q
But at point A, ——— = —
r n
2 -6
So, (3_§) -2 DR 0 o Bx145x10° = 15m/s
at ' n n 3

4.160 (a) Equation of the resultant wave,

E=§+§ = 2acosk( y-;—x)cos{wt _ﬁlx_)}

-a’cos{u)t—k(xz+ }, where a' = 2acosk’ (%{)

Now, the equation of wave pattern is,
x+y =k, (a Const.)
For sought plots see the answer-sheet of the problem book.

For antinodes, i.e. maximum intensity

k(y-x)
cos =+ 1 =cosnx

2
or, t(x—y)=2:n =nk
or, y=xxnh,n=0,1,2,

Hence, the particles of the medium at the points, lying on the solid straight lines
(y = x+ nl), oscillate with maximum amplitude.
For nodes, i.e. minimum intensity,
k(y-x) -0
2

or, :t-k—(—y?_—u=(2n+1)g

Cos
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or, y=xx(2n+1)M2,
and hence the particles at the points, lying on dotted lines do not oscillate.

When the waves are longitudinal,

For sought plots see the answer-sheet of the problem book.

k(y-x) = 008-1%— cos'li—2
o %'COS{"(Y‘JC).+ cos~! %3}
--ga—zcosk(y—x)—sink(y—x)sin( %—)
-Egcosk(y—x)—sink(y—x) l—g—i §))
a a
from (1),
if sink(y-x) =0 sin(nx)

g =& (-1)

thus, the particles of the medium at the points lying on the straight lines, y = x + 2

will oscillate along those lines (even n), or at right angles to them (odd »).
Also from (1),
if cosk(y—x)-O-cos(ZrH-l)%

§1

— =1- §2/a a circle.
a?

Thus the particles, at the points, where y = x+ (n+ 1/4) A, will oscillate along circles.
In general, all other particles will move along ellipses.

4.161 The displacement of oscillations is given by &€ = acos (wt-kx)
Without loss of generality, we confine ourselves to x = 0. Then the displacement maxima

occur at ¢ = nx . Concentrate at ¢ = 0. Now the energy density is given by

w=pdto’sinfor atx=0

T/6 time later (where T = 20)—" is the time period) than ¢ = 0.

W= pazwzsinzg - 3pa o’ = wy

Thus <w> = —-pa“w = ——
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The power output of the source much be
anp Iy = Q Watt.

The required flux of accoustic power is then : Q = in

Where Q is the solid angle subtended by the disc enclosed
by the ring at S. This solid angle is
Q=2x (1 - cosa)

1
So flux S=Il|1 - | 2nP
Substitution gives @ = 21T x 30 (1 - ————) UW = 1.99 pW.
1
1+4

Eqn. (1) is a well known result stich is derived as follows; Let SO be the polar axis. Then
the required solid angle is the area of that part of the surface a sphere of much radius whose

colatitude is < a.
[»3

Thus Q-onsinOdB-Zn(l-cosa).
0
From the result of 4.162 power flowing out through anyone of the opening

P h/2

S [ P —
2( \/R2+(h/2)2)
P(y___h
2( \/4R2+hz)

As total power output equals P, so the power reaching the lateral surface must be.
-P_2.£(1_ h )- ph = 0-07W

21 Var®+n*| VaR*+h?
We are given
E=acoskxmt
S0 %%- = ~gksinkxcoswt and a—? = —gwcoskxsinwt?
Thus (8).o=acoskx, (§), .77 = -acoskx

ax‘_o ax

(6 -aksinkx,(a—g) = ~aksinkx
t=T1/2
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(a) The graphs of (§) and (%E) are as shown in Fig. (35) of the book (p.332).

(b) We can calculate the density as follows :

Take a parallelopiped of cross section unity and length dx with its edges at x and
x+dx.

After the oscillation the edge at x goes to x + E(x) and the edge at x + dx goes to
x+dx+E(x+dx)

=x+dx+E(x)+ Z—de. Thus the volume of the element (originally dx) becomes
(1 +Q§)dx
Ix
Po
1+§—§

Jix

and hence the density becomes p =

[ On substituting we get for the density p (x) the curves shown in Fig.(35). referred to 1
above.

(c) The velocity v (x)at time t = T/4 is
(2.%

= —gwcoskx
at
t =T/

On plotting we get the figure (36).
4.165 Given & = acoskxcosw!?

(a) The potential energy density (per unit volume) is the energy of longitudinal strain. This
is

2
Wy = (%stress x strain) - —;—E(a—g) R (6_§_ is the longitudinal strain)

ax ax
w, = —;—Ea2k2sin2kxcos2mt
o’ E 2 2
But 2 = ? or Ek“=pow
Thus p = %pazwzsinzkxcoszmt

(b) The kinetic energy density is

2
= %p(a—g) = %pazmzcoszkxsinzmt.
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On ploiting we get Fig. 37 given in the book (p. 332). For example at ¢ = 0

1 2
W= W twy = 2pamsm Zkx

and the displacement nodes are at x = + — so we do get the figure.

2k

Let us denote the displacement of the elements of the string by
€ = asinkx coswt?
since the string is 120 cm long we must have k120 = nx
If x, is the distance at which the displacement amplitude first equals 3-5 mm then
asinkx; = 3-5 = asin (kx; +15k)

n-15k
2

One can convince ourself that the string has the form shown below

MM75
N

It shows that kx120 = 4%, so k-—cm 1

Then kx;+15k = n-kx; or kx, =

Thus we are dealing with the third overtone

Also kx; = % 0 a=35V2mm ~4949mm.
1 T 1 T l
We have n = 21 m =21 Where M = total mass of the wire. When the wire

is stretched, total mass of the wire remains constant. For the first wire the new length
= I+ m;! and for the record wire, the length is I + npl. Also Ty = a(mn;!) where a is a
constant and 7, = o (1, !). Substituting in the above formula.

ve = 1 (amgl)(1+myl)
L2214y 0) M

v, - 1 (am 1) (I+mpl)
27 2(1+myl) M

V2 _ 1+my \/:r]_;_.l+n2
vi l+mp My l4my

va _y/m(1+m) \/0 04(1+ 0-02)
vy n(1+ 1) 0-02(1+ 0-04)

=14
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4.168

4.169

4.170

Let initial length and tension be / and T respectively.

So, VI-EIYV—T—

P1
In accordance with the problem, the new length
, Ix 35
I - I- 100 = 0 651
Tx70
d : (- A
and new tension, T T+ 100 1-7T

Thus the new frequency

w1 o1 qfriT
2 20 P11 2x0-651 P1

vv V17 13
vi 065 065

Hence 2

Obviously in this case the velocityof sound propagation

v=2v(L-14)
where I, and [, are consecutive lengths at which resonance occur
In our problem, (L -1;) = I
So v=2vl=2x2000x85 cm/s = 0-34 km/s.
(a) When the tube is closed at one end

v

% (2n+1), where n=0,1,2,...
- 340
4x0 85
Thus for n=0,1,2,3,4,5,6,...,weget
n, = 1001H,, ny = 3001 H,, n; = 5001H,, n, = 7001 H,,
ns =9001H,, ng = 11001 H,, n; = 13001 H,
Since v should be <vy = 12501 H,, we need not go beyond ng.

(2n+1) =100(2n+1)

Thus 6 natural oscillations are possible.

(b) Organ pipe opened from both ends vibrates with all harmonics of the fundamental
frequency. Now, the fundamental mode frequency is given as
v=v/A

or, v=v/21
Here, also, end correction has been neglected. So, the frequencies of higher modes of
vibrations are given by

v=n(v/21) @
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or, vi=v/21, vy=2(v/2]), v3=3(v/2))

It may be checked by putting the values of » in the equation (1) that below 1285 Hz,
there are a total of six possible natural oscillation frequencies of air column in the open
pipe.

Since the copper rod is clamped at mid point, it becomes a mode and the two free ends will
be anitinodes. Thus the fundamental mode formed in the rod is as shown in the Fig. (a).

4.172

4.171 (a) 4.171 (b)
In this case, l = -2'—
S wo¥ _1yENE

’ =271 21 % p e

where E = Young’s modules and p is the density of the copper

Similarly the second mode or the first overtone in the rod is as shown above in Fig. (b).

Here | =

2
Hence vy =——!=—§—V£
21
2n+1 V where n = 0,1,2.

Putting the given values of E and p in the genera] equation
=38(2n+1)kHz
3-8 kHz, v, = (38x3) kHz, v, = (3-8)x5 =19 kHz,
(38x7) =266 kHz, v, = (38x9) = 342 kHz,
vs = (38x11) = 41-8k Hz, v¢ = (38)x13kHz= 49-4k Hz and
= (38)x14kHz> 50k Hz.
Hence the sought number of frequencies between 20 to 50 k Hz equals 4.

Hence v,

V3

Let two waves & = acos (wt-kx) and & = acos (wt+kx), superpose and as a result,
we have a standing wave (the resultant wave ) in the string of the form
E=2acoskx coswt.

According to the problem 2a = a

me
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4.173

Hence the standing wave excited in the string is

E=ay,coskx coswt (€))

or, 98

Jat
So the kinetic energy confined in the string element of length dx, is given by :

-2

= -wa,coskx sinwt 2)

l at
or, dT-%(-nl—’-dx)a,z,,mzcoszkx sin? @ ¢
2 2
ma
or, dT = 2,,,0) sin® wt cosz%-jixdx

Hence the kinetic energy confined in the string corresponding to the fundamental tone

A2
2 2
ma, o
T-de- 2 sin? u)tfcoszzTnxdx
0

21

Because, for the fundamental tone, length of the string [ = —;3

2 2

. 1 2 .
Integrating we get, . T= FMane sin” wt
Hence the sought maximum kinetic energy equals, T, = %m a,2,, o’ ,
because for T, , sinwt = 1
(ii) Mean kinetic energy averaged over one oscillation period
2n/w
)
sin” wr dt
f Tdt 1 f
T> = 1 22 0o
< >-fdt-=4ma,,o) e
Ja
0
1 2 2
or, <T>-§ma,,,m .
We have a standing wave given by the equation
E = asinkx cos wt
So, %—?=-amsinkx sinw¢ 1)
and 95 | akcoskx cos wt )

at
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The Kinetic energy confined in an element of length dx of the rod
2
dT-%(dex)(%?) ;pSa 2sin? wr sin® kx dx

So total kinetic energy confined into rod
V2

T =de- %pSazmzsin2 (ntfsinzzT“ xdx
nSazmzpsinza)t
or, T = ak ©)]

The potential energy in the above rod element

’E
dU = | 3U = - | Frd&, where F; = (pSdx
f {g §, where Fy = (p )3}7
or, F; = - (pSdr) 0’

s0, dU = o?psdr [ &
0

po)zs§2dx - p S a® cos® wt sin’kx dx

or, au = 2 2

Thus the total potential energy stored in the rod U = f au
V2

or, U = p o’ Sa*cos’ wt f sin’ 2—;‘-x dx

0

:rtpSa w’cos’wt
4k

To find the potential energy stored in the rod element we may adopt an easier way. We know
that the potential energy density confined in a rod under elastic force equals :

So, U =

Up %(stressxstrain) = -l-oe = —1-Ye2

2 2

%pv2e

lw_(a_%

|'-

pw
k2

= -2-pa 2w?cos® wtcos’kx

2 g2

\_/N
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4.174

4.175

Hence the total potential energy stored in the rod

%)
U =fUDdV=f -;—pazmzcoszmt cos’kx S dx
0

_ :tpSazwzcoszmt

ak @

Hence the sought mechanical energy confined in the rod between the two adjacent nodes

2 2
EoTs+y=2p@a s
4k
Receiver R, registers the beating, due to the sound waves

reaching directly to it from source and the other due to
the reflection from the wall.

Frequency of sound reaching directly from S to R,

v
Vs—r, = Vo when S moves towards R,

-u

v
and Vvig_,p =V when S moves towards the wall
S—R, [y

Now frequency reaching to R; after reflection from wall

A
vw_.Rl=vov+u,whenSmovestowardsR1 e — o — o —

v RL 5 Rl
and v'y _, R =Vog g when S moves towards the wall
Thus the sought beat frequency

Av = (VS—-RI'VW~Rl) or (V'W—le" VS—-R1>

v v 2vovu  2uv, 1 Hz
=‘VO —‘VO = 3 2- =
v-u v+u  yioy v

Let the velocity of tuning fork is u. Thus frequency reaching to the observer due to the
tuning fork that approaches the observer

’

V=V0

S [v = velocity of sound ]

Frequency reaching the observer due to the tunning fork that recedes from the observer

" V
v =YV
v+u
" 1 1
So, Beat frequency v-v"' = v = vyv -
v-u v+u
2vgvu
or, V=
" vi-u?

So, vu2+(2vv0)u—v2v=0
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-2vvy ¢ \/4v(2,v2+4v2v2
2v
Hence the sought value of «, on simplifying and noting that ¥ > 0

2
\'AY
ooz (Vi (2] )
v Vo
Obviously the maximum, frequency will be heard when the source is moving with maximum
velocity towards the receiver and minimum frequency will be heard when the source recedes

with maximum velocity. As the source swing harmonically its maximum velocity equals
a w. Hence

Hence U=

v, v and v, Vv M
mx = 0 y_am min =0 v tam
. 2aw
So the frequency band width Av = vy, — Vpip = VOV | —5——5 7
vi-a‘w
2y 2 2
or, (Ava“)o“+ (2vyva)w- Avv =0

-2vyvazx \/4v§v2a2+ Av?a?v?
2Ava®
On simplifying (and taking + sign as w — 0 if Av — 0)

2
vV
on e (Vs (3] 1)
Ava Vo
It should be noted that the frequency emitted by the source at time ¢ could not be received
at the same moment by the receiver, becouse till that time the source will cover the distance

So, w =

%w t2 and the sound wave will take the further time —;-w t2/v to reach the receiver. Therefore

the frequency noted by the receiver at time ¢ should be emitted by the source at the time
ti<t . Therefore

t1+(%wt12/v)-t (¢))
and the frequency noted by the receiver
v.= v"’v+wt1 @
Solving Eqns (1) and (2), we get
v
v = = = 1-35 kHz.
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4.178 (a) When the observer receives the sound, the source is

4.179

closest to him. It means, that frequency is emitted by
the source sometimes before (Fig.) Figure shows that
the source approaches the stationary observer with

velocity v, cos 6. L 1 N
Hence the frequency noted by the observer S
v e
vEv"(v-v,‘cos()) N I
; v\ % N
vo(v-nvcose) 1-mncos® @ N\
But x  Yext —tx S 7——x Y N
or, cos® = m 2)
Hence from Eqns. (1) and (2) the sought frequency
v =2 =5 Kz
1-m

(b) When the source is right in front of O, the sound emitted by it will not be Doppler shifted
because 8 = 90°. This sound will be received at O at time ¢ = é after the source has

passed it. The source will by then have moved ahead by a distance v, ¢t = In. The distance
between the source and the observer at this time will be / V1 + n§ = 0.32 km.

Frequency of sound when it reaches the wall

V' Vv+u
=

wall will reflect the sound with same frequency v'. Thus frequency noticed by a stationary
observer after reflection from wall

v' =V , since wall behaves as a source of frequency V'.
v-u
v+u v vV+u
Thus, v'=w . = v
vV v-u v-u
v-u Ao ov-u
or, A=A or — =
vV+u A Vv+u
A’ vV-u 2u
SO) 1- —=1- =
A v+u V+u

Hence the sought percentage change in wavelength

A=A 100 = 2 2100 % = 0.2% decrease.
v+u

A
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4.180 Frequency of sound reaching the wall.
vV-u
v = Vo( v ) ¢y

Now for the observer the wall becomes a source of frequency v receding from it with velocity u

Thus, the frequency reaching the observer

v'-v(v:u)-vo(v—u) [Using (1)]

v+u

Hence the beat frequency registered by the receiver (observer)

Uuv,
% . 0.6 Hz
u

Av = vy—v' =

4.181 Intensity of a spherical sound wave emitted from a point source in a homogeneous absorbing
medium of wave damping coefficient y is given by

I= %paze'z*'mzv

So, Intensity of sound at a distance r; from the source
_h 12padte 1w’y
7 =
and intensity of sound at a distance r, from the source

172pale Mgty

= L/r? =
2772 7'22
. 1 1 I
But according to the problem — ==
nr r;
2
r r
So, .1_1__2_1_.-_ e21n-n) o0 1n n_22 =2y(r,=-1,)
r2 ry
In(nri/rl
or, Y=—(n 2 1)=6><10'3 m~!
2(ry-ry)

4.182 (a)loudness icvel in bells = log IL (o is the theshold of audibility.)
0
So, loudness level in decibells, L = 10 log IL
()}

I
Thus loudness level at x = x; = L, = 10 log Iﬁ
0

.. I"z
Similarly L, =10 logK

I"z
Thus L,-L, =10 long_
1
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()

4.183 (a)

(®)

1/2patw’ve 1™

o, L, =1L,+10log =L, + 10log e~ ?7(="%)

1/2pa’w’ve 2"

L, =L, -20y(x;3-x) loge
Hence L' =L-20yxloge [ since (x;—-x;) = x]
=20dB-20x0-23x50x0-4343 dB
= 60dB-10dB = 50dB
The point at which the sound is not heard any more, the loudness level should be zero.

Thus

L 60
0= - = = =
L-20yxloge or x = o e~ 20x023x0.4343 ~ 00 ™

As there is no damping, so

L, = 1010g—{— = 10 log W = - 20 logr,
o I 12pa’w’y
Similarly L, = - 20logr
So, L,-L, =20 log(ry/r)

To 20
o, L, =L, + 20log|— | =30+20xlog=— = 36dB
° r 10
Let r be the sought distance at which the sound is not heard.
To r r
So, L, = L,0+2Olog—r- =0or L, = ZOIOgE or 30 = ZOIogﬁ
So, logw% =372 or 10 = /20

Thus r = 20010 = 0-63 Km.
Thus for r>0-63 km no sound will be héard.

4.184 We treat the fork as a point source. In the absence of damping the oscillation has the form

C——(’:itLCOS(mt—kr)

Because of the damping of the fork the amplitude of oscillation decreases exponentially with
the retarded time (i.e. the time at which the wave started from the source.). Thus we write
for the wave amplitude.

£ = Const. o ,__
(:u-—) t+1:—-— P+dP
This means that —_—=
Ta

x X+dx
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Ta

Thus e == of=——"—=012.5
g

4.185 (a) Let us consider the motion of an element of the medium of thickness dx and unit area
of cross-section. Let & = displacement of the particles of the medium at location x. Then
by the equation of motion

pdx§ = -dp
where dp is the pressure increment over the length dx
Recalling the wave equation

. 2
E = v2a_§
3 x?
we can write the foregoing equation as
2
ov* I8y - dp
ax
Integrating this equation, we get

Ap = surplus pressure = - pvzg—x§+ Const.

In the absence of a deformation (a wave), the surplus pressure is Ap = 0. So ’Const’ =
0 and

_pv2 8
Ap PV

(b) We have found earlier that
W = w;+w, = total energy density
2 2 2
_1 (8% _1(38) _ 1  2(3%
wk-ZP(Bt)’w’-ZE(ax) 2PV | ax
It is essy *» see that the space-time average of both densities is the same and the space time
average of total energy density is then
2

e < 0?(5] >

The intensity of the wave is
(ap)’
I=vew> = L —pp-v— >

(Ap)n

i ey o1 2 =
Using < (Ap)' > =5(Ap), weget I 2oV
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4.186 The intensity of the sound wave is

4.187

4.188

_(Ap) _(Ap) AN
2pv 2pvA

Using v = vA, p is the density of air.

Thus the mean energy flow reaching the ball is

(Ap).

R?I = nR*—T N\ V/4
n nR ZpvA

7 R? being the effective area (area of cross section) of the ball.

Substitution gives 10.9 mW.

1

P .. . (Ap)
We have = intensity = ———
Anr Y= v
ot (ap)n =V 25
" 2nr
1
_-\/1-293kg/m3x340m/sx0-80w_ 1293 x 340 x -8 (kgkgm?s >ms~1)?
27x 15 x 1-5 m? 2ax1:5x 1§ m
= 4-9877 (kgm‘ls‘2)-=spa.
A
(AP)m _ 5105
(b) We have Ap = —pvzg—é
(Ap), = pvzkE,,, =pv2rvEg,
(AP)m S

Sn = @ = S mpvv ~ Zax1293x340x600 ~ o *™

E. 3x10°°% 180D

-6 -6
X = 3207600 - 3ap <10 =35x10

Express L in bels. (i.e. L = S bels).
Then the intensity at the relevant point (at a distance r from the source) is : Iy10*

Had there been no damping the intensity would have been : e 10-10’“

Now this must equal the quantity

5 » Where P = sonic power of the source.
4nr

Thus P

4xr
or P =4nr?e? Iy10" = 1.39 W.

= 2V Iy10°



103

4.4 ELECTROMAGNETIC WAVES. RADIATION

4.189 The velocity of light in a medium of relative pemmittivity € is \/'L_ . Thus the change in
€

wavelength of light (from its value in vaccum to its value in the medium) is

. C/\/; c c 1
sk s g (dor)som

4.190 From the data of the problem the relative permittivity of the medium varies as

3
e(x) =g e ¥y
Hence the local velocity of light
JE It )
v(x) - __C__ - _c e2l €
e(x) £
1 1 N
Thus the required time ¢ = dx_ Af PR TN
(x) c
0
Jlph
d Ve, —e 2 =41 21Ve -V
‘ [ 1 I €y c 1 €,
21 n %) n €y
—
4.191 Conduction current density = 0E
Displacement current density = %—?— €€ 9 imeeOE
Ratio of magnitudes = I w -'-'5- = 2, on puting the valucs.
W E gy Jdis
T
4192 => - aB aH
E == - — =
v PRy
—_—
=Vecos(wt-K7)x E,, = FXE; sin(wt-k-7)
At =0
oH _  FXE,

So integrating (ignoring a constant) and using ¢ = \/—1—-
€ Ko

— —>
- — [€ KXE
H=mEm mscktx—l— = Lo XX 2 cosckt
Ko ck Ko k
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4.193 As in the previous problem

- kxE,,,
H = oo cos(wt-k-r) = —-—e,cos(kx wt)

V2 E,e cos(kx-ot)
= — E,e cos(kx-wt
o €,

Thus
- € A
(a) att =0 H = V—o E, e coskx
Ko
(b)att=t0,I—I’= il E,,,Q,,cos(kx-—u)to)

Ko

4194 E,u =§ E-dr- E,l(coswt-cos(wt-kl)

.ol wl
=-2E,! sin e sm(mt—?-c-)

Putting the values E,, = SOm V/m, | = —;-metrc

wl 2nvl nx10®8 o

¢ ¢ 3x10® 3

Eing = S0 mV(—sinE) sin(mt—ﬁ)
6 6
= -25si t+— = 25cos| wt-= |\ mV
= sin | o +6 2 os| wt-3
- Iy
4195 E = ] E(t,x) X
=kB(t1x)
> nQ3E 9B _ 1 B
and CurlE—kax——at-—kat
50 9E _ 3B
Tax ot
— 9E 1 o
Also Curl B=80u0—a—t=-c—i—a—t—
» 0B dB 1 0FE
and CurlB -J S SO ox - 22 ar
419 E = E:, cos(wt-k-7) then as before
kxE,
€
I?= =2 "'cos(wt—k—,-?j
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—»

E, x (;(E:,)—l-cosz(mt—l?ﬁ

k
8W2m<mrﬂ
2k
k

“y
]
o
Ty
]

]
§<|§ g

SO

—

<S >

in

o

]
N | =

4197 E = E, cos(2nvi-kx)

@) jaus = %?— = - 2neyvE,sin(wt-kx)

Thus Ui Ioms = < Jdis D'
2 neyvE, = 020 mA/m%
®) <S> = 2 fu% E? asin (196). Thus <S,> = 3.3 p W/m?
4.198 For the Poynting vector we can derive as in (196)
1 gy

<S> = 5 ” E,,z, along the direction of propagation.

Hence in time ¢ (which is much longer than the time period T of the wave), the energy
reaching the ball is
1 £

:tsz-Z- ME’ =5 K.

4199 Here E = E:, cos kx cosw t -

From div 1-5-"= 0 wegetE,, =0 so E, isin the y-z plane.

Also
OE’ — —» -
3r =" VxE = - VcoskxxE, cos wt
= FxE,.,,sinkxcoso)t
- BXE,
so B = sinkxsinwt = B, sin kxsin ot
— E, - -
Where |B,,,| = and B, L E, in the y-z plane.
At t=0,B=0,E =E,coskx

At t=T/4 E=0,B = B,sinkx
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E-E:,c_(:skxmt
= FXE,
H = sinkxsinwt (exactly as in 199)
Ho @
S=ExH = --——x—(—-x———)-—sm2kx sin2w¢t
Ho ® 4
Thus S --l—e cEXsin2kxsin2wt |as —1—-eoc
x 4 0 m Mo €
<S,>=0
Inside the condenser the peak electrical energy W, = % (o4 V,s
2 eonR
V T d

(d = separation between the plates, nR2 = area of each plate.).
V = V,sinwt, V, is the maximum voltage
Changing electric field causes a displacement current

aD

Jas = ot €y E,, wcos ot

€g @ Vm ‘
== coso
This gives rise to a magnetic field B () ( at a radial distance r from the centre of the plate)

gwV,
cos Wt
d

B(r)2nr = p.o:r,rzj,,i, = ponr2

1 r
B = EeouowEVmcoswt

Energy associated with this field is

2 2 R
= fd’r :"-EH—; = -;—egp.o %anrzrdrxdemzooszmt
0

(W

L2 o'RY o o
= Jgreok—g V. cos“wt
Thus the maximum magnetic energy
2 2
_ EoMo 2%R" 2
Wn = 35~ (R =5 Vn
W, 1 ®wR -15
Hence W, 3 goto (WR) = —( p ) =5 x 10

The approximation are valid only if ®R <<¢c.
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4.202 Here I = I, cos w ¢, then the peak magnetic energy is
W, = -;-LI,,% = %-p.onzl,fnkzd
Changing magnetic field induces an electric field which by Faraday’s law is given by

. 405 as e nr .
E-2nr = _dtf B-dS = nripygnl,osinwt

E = %ruonl,,,msin(ot

The associated peak electric energy is

1 4
W, -f SgE*d’r = 1 sop,oznzl2 wzsinzwtan d
2 8 . 2
We 1 2~ R
Hence —W;-geopo(u)R) -_ p )
Again we expect the results to be valid if and only if

(ﬂ) <<1
c
4.203 If the charge on the capacitor is Q, the rate of mcrcase of the capacitor’s energy

10° QQ
dt( ) R2QQ

o €y TT

Now electric field between the plates (inside it) is, E = —;Q——
ﬂ €

Q
AR?
This will lead to a magnetic field, (circuital) inside the plates. At a radial distance r

So displacement current = %g -

2nrrHy(r) = nrzﬁz- or Hy = 2i;2
Hence Hg (R) = E%i at the edge.
Thus inward Poynting vector = § = Tk~ ;—R%;;
Total flow = 2t RdxS = Qde Proved
nR” g

4.204 Suppose the radius of the conductor is R, Then the conduction current density is

. 1 I pl
- =0FE or E = =-——
Je = RS nRfo nR§

where p = %is the resistivity.
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4.205

4.206

Inside the conductor there is a magnetic field given by

H2nRy=1 or H=

I
Tnky at the edge
. Energy flowing in per second in a section of length / is
pI?1

JtR(,2

EsznRol =

But the resistance R = _p_l_f
NRO

Thus the energy flowing into the conductor = [ R.

Here nev = I/nR?
where R = radius of cross section of the conductor and n = charge density (per unit volume)

Also lmv2- eU or v= v 2eU.
2 m

Thus, the moving protons have a charge per unit length

- 2 _ -\/L
nenR I 3eU

This gives rise to an electric field at a distance r given by

I m
E e V 2eU/2J"

. . 1
The magnetic field is H = Tnr (for r>R)

Thus

12 1 / m . .
S = 2 el radially outward from the axis

eo4n2

This is the Poynting vector.

Within the solenoid B = pynl and the rate of change of magnetic energy

v -4 (L, 202 g2\ 2 p2:]
W,,,-dt(zp,onl nR l) pon mRIIT

where R = radius of cross section of the solenoid / = length.
Also H = B/py = nI along the axis within the solenoid.
By Faraday’s law, the induced electric field is

Eg2nr = nr’B = :trzuoni

or Ee--lz-p.onir
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so at the edge Eg (R) = %p.o nIR (circuital)
Then S, = Eg H, (radially inward)
and W,,, 2pton 2[IRx2xR1 = pon ARZIIT as before.

Given ;> @

The electric field is as shown by

the dashed lines (cow—%-rmnv). < %
The magnetic field is as shown O O O

(O) emergmg out of the paper.

5 - ExHis parallel to the wires ) > ) ¢2
and towards right.

Hence source must be on the left.

The electric field (----—>) and the magnetic field (H —> ) are as shown.
The electric field by Gauss’s theorem is like

A
E, = 7
r
Integrating ¢=Aln 72 o
s0 A= (ry> rp) /+v\
r;
In =
n
Then E = 14
r;
rin—=
n
. . I
Magnetic field is Hy = Tnr

The Poynting vector § is along the Z axis and non zero between the two wires

(ry< r < ry) . The total power flux is
L)

—L-andr=IV
272
n 2mr n’_1
As in the previous problem
Vi t Iycos (wt -
Er - _qc;.sro_)_. and He - 0_—2(——-—l)
2 nr
rin—
n

Hence time averaged power flux ( along the z axis ) = %Vo I cos @
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On using <cosm? cos(wt—q>)>-%coscp.

4.210 Let n” be along the z axis. Then
Sip = Ey, Hyy-Eyy Hy,

and 57‘ = sz H2y_E2y H2x
Using the boundary condition E,, = E,, , H,, = H,, at the boundary (¢ = x or y) we see
that

Sin =Sz, -

32
4211 P- a |p"]” when
eé; e
I—’" 2e.-ﬂ’= E;’imi?}’f;EmiFf

€; e

if — = — = fixed
m; m
d* -
But E?Em,- r; = 0 for a closed system
Hence P=20.
120
1.212 = —
P 4me, 3c§
'?'2 = (ew’a)oos’wt
2 4 2
Thus < P> = —2—3(em2a)2x 1, e_m_g__g =51x 10" w,
4mey 3¢ 2 12mec
1,213 Here
2
e ._€9q _1
P mxforce “R? dneg’
2
2
Thus P = 1 3 eq2 23.
(4xeg)” \mR*) 3¢

214 Most of the radiation occurs when the moving particle is closest to the stationary particle. In
that region, we can write

R? = b2+ v3:?

and apply the previous problem’s formula

(4mep)° 3 (b%+v21?)?
(the integral can be taken between o with little error.)

o 2
1 2 qe2 dt
Thus AW c3_j;( — )
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Now f dt _lf dx R
(b2+v2e2?  vd (B%+x?P  2vb?

2 4

Hence, AW = 1 ng e

(4::1:&30)3 3c3mivb®

4.215 For the semicircular path on the right

mv2=Bev or v=B—eB—
R m X X X x
ThusK.E=T-lmv2.B—2LRz- ) X
) 2 2m X X X
2\2
Power radiated = 1 23 LA X X X X
4“30 3¢ R >
Hence energy radiated = A W X X XX
2
__1 2 (B’’R) =R _ B’’R’
4meg 3¢ m? BeR 6eom3c3
3
So AW L _Be 206 x 10"
T 3ggc™m

(ncglecting the change in v due to radiation, comrect if A W/T <<1).

mv
4216 R = B’
2\2 2 2
Then pP= 1 2 ev - 1 2 (e“Bv
43‘80 3c3 R 4“80 3C3 m
1 BZe* T
T3 3 3
mEyC m
This is the radiated power so
T _ B¢’
dt 3negm’c’
Integrating, T = To e~ "
37t£0m3C3
T = 73
Be

T is (1836 )3 ‘= 10" times less for an electron than for a proton so electrons radiate away
their cnergy much faster in a magnetic field.
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4.217 P is a fixed point at a distance !/ from the equilibrium position of the particle. Because

I > a, to first order in £ the distance between P and the instantaneous position of the particle

l
is still I For the firstcase y = 0 so t = T/4
The corresponding retarded time is ' Z—%
r.n __ .2 . ol
Now y (t") macosm(4 c) w”asin =
For the second case y = a at ¢t = 0 so at the retarded time ¢’ = - %l-

Thus j;'(t')-—wzacoszl

The radiation fluxes in the two cases are proportional to (¥ (¢'))” so

S
. tanz%!- = 3.06 on substitution.

Note : The radiation received at P at time ¢ depends on the acceleration of the charge at the
retarded time.

4.218 Along the circle x = Rsinwt?, y = Rcoswt

A
wherem=%.Iftistheparameterinx(t),y(t)and 1 »
t' is the observer time t:hcn wt
t' =t+ l_—ic.(_.t_). :
0 P
where we have neglected the effect of the y--cordinate
which is of second order. The observed cordinate are 1t >
x'"(t")=x(t),y' (") =y(¢)
dy' dy dt dy ~-wRsinwt -WXx -vx/R
Then de’ T dt' Tdt'd” . oR T oy v
1-22c0s0r 1-22 X2
c cR
2.

d*y’ dt d{-vx/R

and I di' at LYy
cR
2
v? vx( v? Yy (y_Y
| e Rl | e
T Lovy), Wy 2 vy \3
1-CR| 1R l_Y_.Y_) 1-2%
cR ¢

This is the observed acceleration.
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(b) Energy flow density of EM radiation S is proportional to the square of the y- projection

dt’2

DRI

2.0
of the observed accéleration of the particle [ ie. d—L) .

4

[¢]

Thus — =

3 v

v) v 1-<

(-2 ey ] ()
Weknowthatso(r)«-r-l-z-

At other angles S (r,0) «sin?0 %@:”/Z
Thus S(r,O)=So(r)sin29-Sosin20 7
Average power radiated

e

= Sox4nr2x§ = .8-3350#

(Avcrage of sin>0 over whole sphere is %)

From the previous problem.

8nSyr?
Py=—3—
or So=il_)22_
8nr
Thus <w>=.&=ip.o_2.
c 8ncr

(Poynting flux vector is the energy contained is a box of unit cross section and length c).

The rotating dispole has moments
Py = pcoswt, p, = psinat

2 4
Thus P = 1 —2—3(042-—-2——(2—3.
4nep 3¢ 6meyc

If the electric field of the wave is -
E=E)cosmt

then this induces a dipole moment whose second derivative is
—
e 2 Eo

F= cos ¢t
2

Hence radiated mean power <P> = 1 2 e2E0 x 1
po Anegy3cd3|l m 2
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4.223

4.224

On the other hand the mean Poynting flux of the incident radiation is

€ 1
<Spc>=7YV —l"—o- XEEO2
P 1 2 s e’ ‘\/ Ko
Th = -z — —
us <Spc> 4dme 3(€ol’-o) (m X €

For the elastically bound electron
.e — —>
my+maofr = eEycosmt
This equation has the particular integral
(i.e. neglecting the part which does not have the frequency of the impressed force)

i B
e cos wt .- e Lyw
r —2—5 soand > =

coswt
m ol-o P

—(mg-m )m

Hence P = mean radiated power
2

1 2 e? w? 1.2
alrv-rydeos 1 Bavscaserd Y 2
4ngy 3¢\ m(wy-w’) | 2

The mean incident poynting flux is

<Sinc> = _"‘Eo

2 2 4
P W (e (0]
Thus <S> =6n( )

Let r = radius of the ball
R = distance between the ball & the Sun (r<<R).
M = mass of the Sun
Yy = gravitational constant
IM 4Ax 3 2,1
Then R 3 r'pe AR mrte

( the factor % converts the energy received on the right into momentum received. Then the

right hand side is the momentum received per unit time and must equal tl.e negative of the
impressed force for equilibrium).

Thus 3P

r= 16xyMcp
PGk S ¢

= 0.606 p m.



PART FIVE

OPTICS

5.1 PHOTOMETRY AND GEOMETRICAL OPTICS

5.1 (a) The relative spectral response V (A) shown in Fig. (5.11) of the book is so defined that
A/V (M) is the energy flux of light of wave length A needed to produce a unit luminous
flux at that wavelength. (A is the conversion factor defined in the book.)

At A = 051 pm, we read from the figure

V(\) = 0-50 so
energy flux corresponding to a luminous flux of 1 lumen = 0156—0 = 32mW
At A = 064 pm, we read
V(») =017

and energy flux corresponding to a luminous flux of 1 lumen = & = 9-4mW

d
(b) Here d®, () = S _dn, MsAs)p,

M-N
since energy is distributed uniformly. Then
[ L5
® -fV(h)d@ WA = i———j~ V(A dAa
) ? AN -N) )
1 1

since V (A) is assumed to vary linearly in the interval A, < A <},, we have
Lo

1 1
kl_MfV(K)dK =3 Vi) +Vv(M))
)'l
D,

Thus D = A V) +V(y))
Using V(0-58 pm) = 0-85

V(063 pm) = 025

P,

Thus D = x 11 = 1-55 lumen.

2x16
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DA
52 W = ——
e have ®, v
1 \ /
But P, =5 2 E,2,,><4ﬂ:r2 or E,2,,=-——?;A; Ro
Mo 2rnr'v(h) &
area
mean energy
flux vector
For A=05pum V(M) = 074 Thus
E, =114V/m
£
Also H, = M_ E, =302mA/m
0

5.3 (a) Mean illuminance
Total luminous flux incident
Total area illuminated

Now, to calculate the total luminous flux incident
on the sphere, we note that the illuminance at the
point of normal incidence is E, . Thus the incident

flux is E, - n R%. Thus

. . Jl:R2 . EO
Mean illuminance = ——————
2nR
or <E> = lE
270

(b) The sphere subtends a solid angle

.

2x(l-cosa) = 2m |1~
at the point source and therefore receives a total flux of

VE-R

2nl|1- ]

90-a

The area irradiated is : 2nR2fsin9d9 = 2nR*(1 -sino) = 2nR2(1—§—)

0
I 1-V1-@R/1)
Thus <E> = & ———————
R 1R

1
Substituting we get <E> = 50 lux.
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5.4 Luminance L is the light energy emitted per unit area of the emitting surface in a given
direction per unit solid angle divided by cos 6. Luminosity M is simply energy emitted per
unit area.

Thus M-fL-cosG-dQ

where the integration must be in the forward hemisphere of the emitting surface (assuming
light is being emitted in only one direction say outward direction of the surface.) But

L =Ljcos @
2
Thus M:fLoCOs29~dQ = Zﬂf LoCOSzﬂsin9d9= %3‘[1‘0
0

5.5 (a) For a Lambert source L = Const
The flux emitted into the cone is

®=LAScosadQ

=LASf 2ncosasinada
0

=LASn(1-¢os’0) = nL ASsin’0

(b) The luminosity is obtained from the previous formula for 0 = 90°

M= CD!BA=S9O ) _ xL

5.6 The equivalent luminous intensity in the direction OP is

LScosB 0
and the illuminance at P is
LScos® o LSH
R+ 1) (R* + h%)? 0
LS LS
= 7= 2
R? 2 h
(7 + h) B _VK) +2R 0
vh
P
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5.7

58

This is maximum when R=n~h
and the maximum illuminance is
2
L52 - 16 x 10 = 40 lux
4R 4
The ilinminance at P is
1(8) I(6)cos’ 0
E, = cos 0 =
P k) P
since this is constant at all x, we must have 0
1(8)cos®8 = const = I, )
orl (B) = Io/cos3 6 ;l
The luminous flux reaching the table is 6
I
<I)=nR2x—g=314lumen - P
h a x

The illuminated area acts as a Lambert source of luminosity M = n L where
MS = pES = total reflected light
Thus, the luminance

L = RPE
1

The equivalent luminous intensity in the direction
making an angle 6 from the vertical is

LScosO = &iicose

and the #lluminance at the point P is

Lii cos 0 sin 0/R? cosec’ 0 = E-%;E cos 0 sin> 0
n

This is maximum when P

fa(cosesinse) = —sin*0+3sin’0cos’ 0 = 0

or tan29-3=>tan6-\/§
Then the maximum illuminance is

3V3 pES

16 R?

This illuminance is obtained at a distance R cot® = R/V3 from the ceiling. Substitution
gives the value

0-21 lux
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From the definition of luminance, the energy emitted in
the radial direction by an element dS of the surface of the

dome is
dd =1LdSdQ 9
Here L = constant. The solid angle d Q is given by
dAcos 0
dQ = ———
R 0
where dA is the area of an element on the plane illuminated by the radial light. Then
do - L4544 g
R

The illuminance at O is then
2 .

E = -d—q)--f—L—2ustin9d9cosG-2JtL xdx = nL
dA R?
0

Consider an element of area dS at point P. 4
It emits light of flux

d® =LdSdQcos 6

- Lds =94 . coso
h* sec
[$,
= L——d:;dA cos*0 P ‘

A
4

in the direction of the surface element dA at O.
The total illuminance at O is then

E =dezScos46
h

But dS =2nardr = 2nhtan 0d (htan0)
= 2nh’sec’0tan0d 0
2
Substitution gives E = 2an sinBcos0dO = nL

0

Consider an angular element of area
2nxdx = 2nh’tanOsec20d O

Light emitted from this ring is

d® = LdQ(2nh*tan0sec* 0d ) - cos 0
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d A cos 0

h?sec’®

where dA = an element of area of the table just below the untre of the illuminant.

Now dQ =

Then the illuminance at the element dA will be

0=a

Eq -onLsinecosedO
0«0

where sina = —R__ . Finally using luminosity M = nL

Vi +R?

. 2 R?
Ey = Msin“a = Mh2+R2
1 2 Im . .
or M = Ej|1+—| =700lm/m” *(11x = 1 —; dimensionally |.
R m

5.12 See the figure below. The light emitted by an element of the illuminant towards the point O
under consideration is

d® =LdSdQcos (a+p)
The element dS has the area

dS = 2nR*sinada
The distance
12
OA = [h2+R2—2thosa]

we also have

04 __h___ R R
sina  sin (o + ) B sin @ & A
From the diagram \
_ \
cos (a + B) = hcosa-R oC+/3 \
OA B \
cos B = h =R cos a N
OA

If we imagine a small area d= at O then

d):cogﬁ - do
OA

Hence, the illuminance at O is

fd_cp =fL2uR25imda(hoosa-R)(h4-Rcosa)
dz (04)
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The limit of o is o = 0 to that value for which o+ = 90° for then light is emitted
tangentially. Thus

Olpax = cos'lﬁ
max h
oos 1R
h
Thus E -f L2nR%sinado B Reos ) (hoos o - k)
4 (h*+R“-2hRcos o)
we put y=h +R*-2hRcosa
So, dy = 2hRsinada
B/ _h2.+R2—y h2+R2*‘l_R
dy 2h 2R
. 2
E fLZuR AR 2
¢=-R'
K-
_L2nR? (B -R*+y) (W -R*-y)
S KR 2 dy
¢:-R'
K-R L.
P2 ooz 2 2 PR
L f W-FF ||, o nL [ @-RY
4h2 2 y2 W y (h—R)z
(h-R)
_xnL 242 ph 2 p2 a2
oy [(h+R) (W -R)-(W*-RH+(h-R) ]
nL 2 2 2 2 L R?
= == |2K +2R -2 +2R"| = ——
4h2[ ' ' ] h
Substitution gives : E = 251 1ux
5.13 We see from the diagram that because of the law
of reflection, the component of the incident unit
vector e along - n'changes sign on reflection while h’

the component || to the mirror remains unchanged.
.. - - —>
Writing e = ¢+ e, e
- —>
where e, = nen)
- - —>
e = e-nien)

we see that the reflected unit vector is 777777% >
s

e = ﬁ—a =e-2nlen)

Ny
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5.14

5.15

5.16

‘We choose the unit vectors perpendicular to the mirror as the x, y,z axes in space. Then after
reflection from the mirror with normal along x axis
—>' - AN — A
e =e-2 z(z-?’} =-e lte,
A, A, A
where 1, j, k are the basic unit vectors. After a second reflection from the 2nd mirror say
along y axis.

A A

jte k

" . A A —3 A, A A
e =e -2j(je)=-ei-¢e h+e k
Finally after the third reflection
—m A A % —
e =-el-¢J-ek=-c¢.

Let PQ be the surface of water and n be the R.I. of water. Let AO is the shaft of light with
incident angle 6; and OB and O C are the reflected and refracted light rays at angles

0; and 0, respectively (Fig.). From the figure 6, = g- 6,

N
From the law of refraction at the interface PQ A ( 9 _b
sin 01 sin 91
Tsin®, (m o e ———
S‘“(E'el) P::-_:Q = - .
sin 0, o= 0 -'—__::_
or,n—cosel—tanel = =NC = °-
Hence 0, = tan"!n
Let two optical mediums of R.I. #; and n, respectively be
such that n; >n, . In the case when angle of incidence is N
0, (Fig.), from the law of refraction
nysin @, = ny @) Ny al Q
In the case , when the angle of incidence is 8,, from the p 77,
law of refraction at the interface of mediums 1 and 2 .
ny sin 61 = n, sin 92 \&Icr
But in accordance with the problem 6, = (/2 -0;)
so, n;sin 8; = n,cos 6, 2
Dividing Eqn (1) by (2)
sin 0, , 1
sin el - CoSs 91
2
1 v n -1
= = — i = 3
or, n = o,’ so cos 0, Tl and sin 0, - (3)
n cos 6
But L2
ny sin0;
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n
SO, -—l - l _TI_ (IJSing 3)
n, 1M
Tl
Thus e
np n?-1

From the Fig. the sought lateral shift

=OMsin(0-8)
=dsec Bsin (0 - )
= d sec P (sin 0 cos B - cos O sin B)
=d(sinf-cosOtanf) 1)
But from the law of refraction

sin® = nsinB or, sinf = 51:6

2 .2

\/n —-sin“0 sin O

So, cosp = ————— and tanf = ———

" V n?-sin’0
Thus x =d(sinO-cosOtanf) = d sine—cose—il-g-—-

V n2_sin’0
==dsin9[1-v L-sin 8 9 ]
n?-sin’0

From the Fig.
MP  MNcosa
OM ~ hsec(a+da)

As d o is very small, so

MNcoso. MN cos’a

sinda =

do = hseca h @
Similarly
2
do = MNc'os 0 @)
h
From Eqns (1) and (2)
do H cos’a hcos’0 da
— =——>— or, h = —_— 3
do hcos?0 cos? a 0 3

From the law of refraction
nsina = sin 0 A)
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5.19

5.20

. sin 0 n?-sin’0
sma-T, SO, cosa = —_— (B)

Differentiating Eqn.(A)

da cos 0

ncosado = cos0d0 or, —— = )
0 ncosa
Using (4) in (3), we get
, h cos’ 0
W = 3 ®
ncos’ a
3 2, 3
Hence A = —no9 _ __Whoos8 1 yiing Eqn(B) ]
(nz—sinzﬂ) (nz-sinze)
n 2
n

The figure shows the passage of a monochromatic ray through the given prism, placed in air
medium.

From the figure, we have

0=p:+p; A)
and a = (oy+0)-(B;+B2)
a=(a;+ay)-6 @)

From the Snell’s law

sino, = xsin P,

or a; = nf, (for small angles) )
and sina, = nsinf,
or, o, = n P, (for small angles) 3)

From Eqns (1), (2) and (3), we get

a=n(p+B)-0
So, a=n(6)-0 =(n-1)6 [Using Eqn.A]
(a) In the general case, for the passage of a monochromatic ray through a prism as shown
in the figure of the soln. of 5.19,

a=(0+0)-0 )]
And from the Snell’s law,

sinoy = nsinf; or a; = sin”!(nsinpB;) )
Similarly a,=sin~' (nsinB,) = sin~![nsin (8- B,)] (As 8= B; +B)
Using (2) in (1)
a = [sin"(nsinﬂl)+sin'1(nsin(0—Bl))]-9
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For a to be minimum, g—gl =0
or, n cos Py _ ncos(0-f) -0
\/1—n2sin2ﬂl \/l—nzsinz(e-ﬂl)
o cos’B, _ cos’(0-P;)
’ (1-n%sin’B;) 1-n?sin®(0-B,)
or, coszﬁl(l-nzsinz(e—ﬁl))-cosz(e—ﬂl)(l—nzsinzﬁl)
or, (1-sin’;)(1-n’sin’(0-py)) = (1-sin”(0-B;))(1-n"sin’py)
or, 1-n%sin?(0-P,) - sin? B, +sin® B; n*sin® (6 - B, )
= 1 -n2sin?B, —sin’ (0 - B, ) +sin’P; n2sin® (0 - B,)
or, sinz(e-a,)-nzsif(e_al)-sinzal(l-nz)
or, sin2(9-ﬁ1)(1—n2).-sinzﬁl(l—nz)
or, 0-B; =B, or B, =062
But Bi+P, =0, so, By =0/2 =

which is the case of symmetric passage of ray.
In the case of symmetric passage of ray

o = oy = a' (say)
and §; = B, = § = 6/2
Thus the total deviation
a=(a;+a,)-0

a=2a’'-0 or a,_a;ﬂ (¢))
But from the Snell’s law sin o = nsin f8
So, sin(JH - nsing
2 2

In this case we have
a+0
2

sin =n sin% (see soln. of 5.20)

In our problem o = 0
So, sin@® = nsin(6/2) or 2sin(8/2)cos (0/2) = nsin (0/2)

Hence cos (6/2) = —;— or 0 =2cos !(n/2) = 83°, where n = 15
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5.23

5.24

In the case of minimum deviation
. o+0 . 0
sin > = nsin >

So, a = 2sin‘1{nsing}—9- 37°, for n = 15

Passage of ray for grazing incidence and grazing imergence

is the condition for maximum deviation (Fig.). From Fig.
a=n-0=nx-20,

(where 0, is the critical angle)

So, a = n-2sin(1/n) = 58°,

for n = 1:5 = R of glass. / \
The least deflection angle is given by the formula,

d = 2a -0, where a is the angle of incidence at first surface and 0 is the prism angle.

Also from Snell’s law, a, sin a = n,sin (0/2), as the angle of refraction at first surface is
equal to half the angle of prism for least deflection

50, sina = Zsin (0/2) = L2 sin30° = 5639
nl 1'33
or, a = sin~1(-5639) = 34-3259°

Substituting in the above (1), we get, & = 8-65°

From the Cauchy’s formula, and also experimentally the R.I. of a medium depends upon the
wavelength of the mochromatic ray i.e. n = f(A). In the case of least deviation of a
monochromatic ray the passage a prism, we have: .

0 a+0
0 _ 0
nsin > = sin— 1)
The above equation tales us that we have n = n( o ), so we may write
dn
- )
An daAa )]

From Eqn. (1)

2 2
cos

dn
or, — = &)

do 2sin =~
From Eqgns (2) and (3)

a+0
cos —
An = Aa
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. 2(a+8 .‘/
1'5“‘( 2 ) l—nzsinzg

or, An = Aa = A o ( Using Eqn. 1.)
2sine— 2si )
2 )
2sing
Thus Ao = An =0-44
2.20
1-n"sin 2

Fermat’s principle : “ The actual path of propagation of light (trajectory of a light ray ) is
the path which can be followed by light with in the lest time, in comparison with all other
hypothetical paths between the same two points. ”

“Above statement is the original wordings of Fermat ( A famous French scientist of 17th

century)”

Deduction of the law of refraction from Fermat’s principle :

Let the plane S be the interface between medium 1 and medium 2 with the refractive indices
n; = c/vyand n, = c/v, Fig. (a). Assume, as usual, that n; < n, . Two points are given— one
above the plane S (point A ), the other under plane S (point B ). The various distances are :

AAy =hy, BB, = hy,, A;B; = I. We must find the path from A to B which can be covered
by light faster than it can cover any other hypothetical path. Clearly, this path must consist
of two straight lines, viz, AO in medium 1 and OB in medium 2; the point O in the plane
S has to be found.

First of all, it follows from Fermat’s priniciple that the point O must lie on the intersection
of S and a plane P, which is perpendicular to S and passes through A and B.

Indeed, let us assume that this point does not lie in the plane P; let this be point O, in Fig. (b).
Drop the perpendicular O, O, from O; onto P. Since A O, <A O, and B O, < B O,, it is clear
that the time required to traverse A O, B is less than that needed to cover the path A O, B.

Thus, using Fermat’s principle, we see that the first law of refraction is observed : the incident
and the refracted rays lie in the same plane as the perpendicular to the interface at the point
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where the ray is refracted. This plane is the plane P in Fig. (b); it is called the plane of
incidence.

Now let us consider light rays in the plane of incidence Fig. (c). Designate

A0 as x and O B; = ]l -x. The time it takes a ray to travel from A to O and then from
Ot B is

AO OB ViZex? Vi2+(i-x)

T 22 AT ___l_(____l_ (1)
Vi V2 Vi V2

The time depends on the value of x. According to Fermat’s principle, the value of x must

minimize the time 7. At this value of x the derivative d 7/d x equals zero :

dT X l-x

dx - -0 @
Vl\/h12+x2 Vz\rhzz+(l—x)2
Now,
— . sina, and . S = sin f§,
Vh12+x2 Vh22+(l—x)2
Consequently,
sinov.__sinﬁ_0 or sina _ Vi
vy v, ’ sinp v,
i c/n n
So, sin o 1M

sinB - o/mm
Note : Fermat himself could not use Eqn. 2. as mathematical analysis was developed later
by Newton and Leibniz. To deduce the law of the refraction of light, Fermat used his own
maximum and minimum method of calculus, which, in fact, corresponded to the subsequently
developed method of finding the minimum (maximum) of a function by differentiating it and
equating the derivative to zero.

5.26 (a) Look for a point O' on the axis such that O’ P’ and O’ P make equal angles with 0" O.

This determines the position of the mirror. Draw a ray from P parallel to the axis. This
must on reflection pass through P'. The intersection of the reflected ray with principal
axis determines the focus.

N\

@ (®)
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(b) Suppose P is the object and P is the image. Then the mirror is convex because the image
is virtual, crect & diminished. Look for a point X (between P & P’) on the axis such that
PX and P’ X make equal angle with the axis.

™) P'

— /

p 7
@) . (®)

5.27 (a) From the mirror formula,

1
7 we get f=s

1)

In accordance with the problem s ~s' =/ fs— =8,

. l
From these two relations, we get : s = —— |  §' = - 1B

Substituting it in the Eqn. (1),

2
!
fs( 3) 1p

1-

& ,(1_—9) Ta-g)
1-
1

B

(b) Again we have, %4- %4. 1=

1_1

. = 7 or,

) 1 _s . _s-f
or, B, 7 1 7

or, 51';% @

s
f

Now, it is clear from the above equation, that for smaller f, s must be large, so the
object is displaced away from the mirror in second position.

. B = 53h— )

Eliminating s from the Eqn. (2) and (3), we get,

- _I&BL - _2.5cm

C(Ba-B)
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5.28

5.29

. 1 1 1 s
For a concave mirror as usual —+= = = so §' = i
s s f s-f
(In coordinate convention s = - s is negative & f = —|f]| is also negative.)

If A is the area of the mirror (assumed small) and the object is on the principal axis, then

the light incident on the mirror per second is I ‘iz
s

This follows from the definition of luminous intensity as light emitted per second per unit

solid angle in a given direction and the fact that éf is the solid angle subtended by the mirror
s

at the source. Of this a fraction p is reflected so if I is the luminous intensity of the image,

A

A
then ] — = ply—
52 P 02

2
Hence I=pl (ﬁ!‘li_l—;)
(Because our convention makes f- ve for a concave mirror, we have to write | f|.)
Substitution gives I =20 x 10*cd.
For O, to be the image, the optical paths of all rays
OAO; must be equal upto terms of leading order in A. Thus

n; OA + ny AO, = constant
But, OP = |s|, O, P ='|s'| and so
2

OA = VR + (Is|+8)* = |s| +d + -Zi—

Is] A
ViZ 7 ~ K
01A=h+(|s|—6)=|s|—6+m h
. 2 T T T
(neglecting products A 6). Then . 0 Pls M c O,
n
n1|s|+n2|s’|+n16—n26+h?(ﬁ+l?—,l)-Const.
Now (r-08P+hr=r
2
or M =2rd or 6=-h—
2r
Here r = CP.
Hence ny|s| + n |.<>"[+ﬁ Ao, B, 22l Constant
' 2 2 r Isl 15
Since this must hold for all 4, we have
n; ny np-m

ST TsT™ 7 r
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From our sign convention, s' > 0, s < 0 so we get

n, m n, -nm
2221

s s r

5.30 All rays focusing at a point must have traversed the same optical path. Thus

5 L

r

| F ,
o\~ Fx— F

O)
x+nVri2+(f-x? =nf or (nf-x)7° = n2r2+n2(f—x)2
or, ntp? = (nf—x)z-[n(f-x)]2 =(nf-x+nf-nx)(nf-x-nf+nx)
=x(n-1)2nf-(n+1)x)
=2n(n-1)fx-n+1)(n-1)x*

Thus, (n+1)(n-1)x2-2n(n-—1)fx+n2r2=O
n(n-1)f = \/nz(n-1)2f2-n2r2(n+l)(n—1)
50 *= (n+1)(n-1)
__"L[l Vi n+1r_2]
n+1 * _n-lf2

Ray must move forward so x < f, for + sign x >f for small r, so —sign.
(Alsox - 0 as r — 0)

(x >f means ray turning back in the direction of incidence. (see Fig.)

2
Hence x=—nf~[1— l-ll-il-r—z]
n+1 n-1f
For the maximum value of r,
2
n+lr
1- — =0 A
because the expression under the radical sign must be non-negative, which gives the maximum

value of r.

Hence from Eqn. (A), 7px=fV (n-1)/(n+1)
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5.31 As the given lense has significant thickness, the thin lense, formula cannote be used.

For refraction at the front surface from the formula = —f =2 1; 2
L5 1 _15-1
s =20 5

On simplifying we get , s’ = 30 cm.

Thus the image /' produced by the front surface behaves
as a virtual source for the rear surface at distance 25 cm
from it, because the thickness of the lense is 5 cm. Again
from the refraction formula at cerve surface

" n n-n =~

s s R ! N TSeee /
1 15 1-15 0 T =T
s 25 -5

6

On simplifying, s’ = + 6-25 cm
Thus we get a real image / at a distance 6: 25 cm beyond the rear surface (Fig.).

5.32 (a) The formation of the image of a source S, placed at
a distance u from the pole of the convex surface of
plano-convex lens of thickness d is shown in the fig-

ure.
. . . N\
On applying the formula for refraction through spheri- \\
cal surface, we get \ N
57—%-=(n-—1)/R,(hcren2=n and n, =1) AN
N Ol
n_1_ 1_n_@-np O R
or, i 5" (n-1)/R or, s~ 4 R l
) |

s _ofr_@m-1 >

ob s ¢ {d R } <3S | «—d—

But in this case optical path of the light, corresponding to the distance v in the medium

is v/n, so the magnification produczd will be,

g g @-D] _dfr @-D] , d@r-1)
“ns nld R .[ n)ld R nR
Substituting the values, we get magnification § = - 0-20.

(b) If the transverse area of the object is A (assumed small), the area of the image is f*A.

2

We shall assume that = > A. Then light falling on the lens is : LA >

s

4

nD*/4




from the definition of luminance (See Eqn. (5.1c) of the book; here
cos® m~ 1 if D> << s* and dQ =

nD*/4

2
La /4 | B4 = Lo aD¥/4d

.5'2

Substitution gives 42 1x.

5.33 (a) Optical power of a thin lens of R.I. 7 in a medium with R.I. n, is given by :

®)

1 1
D =(n- ——=
(n-n) R R,
From Eqn.(A), when the lens is placed in air :
1 1
q)o - (n—l)\Rl—Rz
Similarly from Eqn.(A), when the lens is placed in liquid :
1 1
q)-(n_nO) Rl—Rz
Thus from Eqns (1) and (2)
=20, -2D
n-1 0_
The second focal length, is given by
"= % , where n' is the R.I. of the medium in which it is placed.

Ny
f= - 85 cm
Optical power of a thin lens of RI. »n placed in a medium of R.I. ny is given by :
1
P = (n-no)(R—l—

For a biconvex lens placed in air'medium from Eqn. (A)

- 2(n-1)

q’o‘(”—l)(i?-

Optical power of a spherical refractive surface is given by :

n-n

D =

For the rear surface of the lens which divides air and glass medium

n-1

¢0‘ R

A
-R

where R is the radius of each curve surface of the lens

5—). Then the illuminance of the image is

1

R,

(Here n is the R.I. (2) of glass)
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(A)

@

@

GV

)

(B)
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5.34 (a)

Similarly for the front surface which divides watc - "ud glass medium

n-n n-ng
=

"R R (€)

q)lﬂ

Hence the optical power of the given optical system
n-1 n-ny 2n-ny-1

D= Dty = b = R @
From Eqns (1) and (4)

d 2n-ny-1 (2n-ny-1)

®,  2(n-1) ?==mon Po

Focal length in air, f = -(% =15cm

n
and focal length in water = 5?— = 20cm for ny = -;1
Clearly the media on the sides are different. The front focus F is the position of the
object (virtual or real) for which the image is formated at infinity. The rear focus F' is
the position of the image (virtual or real) of the object at infinity. (a) Figures 5.7 (a) &
(b). This geometrical construction ensines that the second of the equations (5.1g) is

obeyed. DV P
:gf 4
/
C
g
AP /’\/ﬁ B
o Ff 0 LYF
(a) Convex lens (b) Concave lens AN

(b) Figure 5.5 (a) & (b) with lens

\ T

p' P<< >
5T
. Pl
Y]
0 4/ F 0 F
P
v A
(a) Convex lens (b) Concave lens

(P is the object)
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(c) Figure (5.8) (a) & (b).

Clearly, the important case is that when the rays
(1) & (2) are not symmetric about the principal \
axis, otherwise the figure can be completed by 1
reflection in the principal axis. Knowing one path

we know the path of all rays connecting the two 7
points. For a different object. We proceed as 0! or
shown below, we use the fact that a ray incident € >

at a given height above the optic centre suffers a T~ ->or"”
definite deviation. T =S =z

The concave lens can be discussed similarly. 4

Since the image is formed on the screen, it is real, so for a conversing lens object is in the
incident side.
Lets; and s, be the magnitudes of the object distance in the first and second case respectively.

We have the lens formula

- 7 (1)

i 1 1 L0 _ %
GD ™ ey T O B Tiog T e

Similarly from Eqn.(1) in the second case

1 1 1 lf
(I-al) (-s) f (I-Al)-f

Thus the sought distance Ax = s;-5; = 0-Smm =~ Alf/(1-1?

or, 5 = = 26-36cm.

The distance between the object and the image is I Let x = distance between the object and
the lens. Then, since the image is real, we have in our convention, ¥ = —x, v = [ -x
“ 1,1 1
x Il-x f
or x(l-x)=1If orxz—xl+lf=0

Solving we get the roots
x=l[l:V12—4lf]
2
(We must have [ > 4f for real roots.)

(a) If the distance between the two positions of the lens is Al, then clearly
Al = x,-x, = difference between roots = VP - qif

2
S0 f-—LA—!—=200m.

41
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5.37

5.38

5.39

(b) The two roots are conjugate in the sense that if one gives the object distance the other
gives the corresponding image distance (in both cases). Thus the magnifications are

l + VP - L+ VI - 4lf -V - L -VI - 4Ff
. ﬁT_— (enlarged) and m (diminished).

The ratio of these magnification being 1 we have

I -VE-af o~ VE-—df ‘/»/i_
n

I -VP-ap " ! w1
Y (-1 o, Ym
o toa (‘/*T 1) Lo s vay
Hence f (I—%II—\/T)- 20 cm.

We know from the previous problem that the two magnifications are reciprocals of each other
(B8’ B"” = 1). If h is the size of the object then A’ = B’ h and

hH = ﬁ" h
Hence h=vVh n'.

Refer to problem 5.32 (b). If A is the area of the object, then provided the angular diameter

‘. . D
of the object at the lens is much smaller than other relevant angles like — we calculate the

f

2
light falling on the lens as LA —422—

where 42 is the object distance squared. If B is the transverse magnification [f = ::‘i) then
the area of the image is ﬁ2A. Hence the illuminance of the image (also taking account of
the light lost in the lens)

=D’ 1 (1 -a)nD*L
45’ p*A 412
since s’ = f for a distant object. Substitution gives E = 15 1x.

E=(1-o)LA

(a) If s = object distance, s’ = average distance, L =
luminance of the sounce, A S = area of the source as-
sumed to be a plane surface held normal to the prin-
cipal axis, then we find for the flux A ® incident on
the lens

A<1>=fLAScosedQ

2
-LASfcosGZnsinede -LASnsin’o = LAS®D

4s°
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Here we are assuming D << s, and ignoring the variation of L since o is small
2

!

Then if L' is the luminance of the image, and A S’ = (%—) A S is the area of the image

then similarly

2 2 2
Uas 2 aoras P nras L D
45 4s 45 7 /2
or L' = L irrespective of D. I 7 1
S | S

(b) In this case the image on the white screen from a Lambert source. Then if its luminance
is Ly its luminosity will be the x L, and

S,2 2

D
nly—AS =LAS—n
0s2 4s°

or Ly x D?

since s' depends on f, s but not on D.

Focal length of the converging lens, when it is submerged in water of R.I n, (say) :
b fiefi-
Simillarly, the focal length of diverging lens in water.
1_ (ﬁ_l)(L__l_) Z2(m-ny) )
ng -R R ny R
Now, when they are put together in the water, the focal length of the system,
1. 1,1
f f h
- 2(”1-”2)_ 2 (ny - mo) - 2(n-m)
ny R ny R nyR
-myR
T2 (n-m)

or, = 35cm

C is the centre of curvature of the silvered surface and
O is the effective centre of the equivalent mirror in the
sence that an object at O forms a coincident image. From
the figure, using the formula for refraction at a spherical

surface, we have ; N\
C 0

A Ll 21l f.——F

-R 2f R T 2@n-1)

(In our convention f is - ve).
Substitution gives f = - 10 cm.
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5.42 (a) Path of a ray, as it passes through

the lens system is as shown below. 1\ \
Focal length of all the three lenses, >
1 . i

f= oM 10 cm, neglecting their signs.

| ——>|

> 337

Applying lens formula for the first lens, \L_ Som - Scm > & Sem |
considering a ray coming from infinity, ?
1. 1.1 of, s =f=10cm, (Q)

s o f

and so the position of the image is 5 cm to the right of the second lens, when only the
first one is present, but the ray again gets refracted while passing through the second, so,
1 1 1 1

sT5TFT -0
or, s' = 10 cm, which is now 5 cm left to the third lens so for this lens,

11 1 13
"5 10 s" 10
or, s" = 10/3 = 3:33 cm. from the last lens.

(b) This means that if the object is x cm to be
left of the first lens on the axis OO’ then the image
is x on to the right of the 3rd (last) lens. Call the
lenses 1,2,3 from the left and let O be the object,
O, its image by the first lens, O, the image of
O, by the 2nd lens and O;, the image of O, by
the third lens.
O, and O, must be symmetrically located with
respect to the lens L, and since this lens is
concave, O; must be at a distance 2 | f, | to be the
right of L, and O, must be 2|f,| to be the left
of L,. One can check that this satisfies lens <b>
equation for the third lens Lj

u=-Q2|H+5 =-25cm.

s =x, f;=10 cm.
1 1

1
Hence P + 2% = 10 so x = 16.67 cm.

5.43 (a) Angular magnification for Galilean telescope in normal adjustment is given as.

I =f/f
or, 10 = fyYf. or f,=10f, )
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The length of the telescope in this case.
! = f,~f. = 45 cm. given,

So, using (1), we get, ,r Y
fe=+5and f, = +50 cm.
(b) Using lens formula for the objective, 0 o' {:e
LI R Soo = 5u'Scm ' .
So %0 fo T satho S T
From the figure, it is clear that, 4' I—J@ﬁ’—)l
e— [ —A

§'o=10"+f_, where I' is the new tube length.
o, I'=v,~f, =505-5 =455cm.
So, the displacement of ocular is,

Al=10-1=455-45 = 0-5cm

In the Keplerian telescope, in normal adjustment, the distance between the objective and
eyepiece is fy + f,. The image of the mounting produced by the eyepiece is formed at a
distance v to the right where

1 1_1
s s f.
But s ==+ f)

0 S S
fe fotfe LG+ f)

The linear magnification produced by the eyepiece of the mounting is, in magnitude,

1
0 =
s

s’ fe
81=151= 2
. d .
This equals ) according to the problem so
. k_D,
f. d

It is clear from the figure that a parallel beam
of light, originally of intensity I has, on
emerging from the telescope, an intensity.

2

because it is concentrated over a section whose
diameter is f,/f, of the diameter of the cross

section of the incident beam.
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2
Thus ns(—o)
So I‘='&=\/'r_]
fe
tan ' W
Now r=tan\P=\I‘

Hence ¥ = ¥'/Yn = 0.6 on substitution.

5.46 When a glass lens is immersed in water its focal length increases approximately four times.

We check this as follows as :
1 1 1
—=Mn-1) |7 - =
poesb (R1 Rz)

— =1
1 _(m_\(L_1y_Mm 1 _ n-m 1
fw ny Ry Ry n-1 f, n@n-1)f

Now back to the problem. Originally in air

I‘=§’-=15 sol=f+f,=f T +1)

, Mo n-1
In water, f. = pra— f.
and the focal length of the replaced objective is given by the condition

' +f=1=T+ 1

or fo =T +1)f-f
, R n-n
Hence I‘—‘,=(I‘+1)no(n_1)—1

Substitution gives (n = 1.5, ny = 1.33), I' = 3.09

5.47 If L is the luminance of the object, A is its area, s = distance of the object then light falling
on the objective is

LnD?
44

The area of the image formed by the telescope (assuming that the image coincides with

A

the object) is I'? A and the area of the final image on the retina is
2
-
s
Where f = focal length of the eye lens. Thus the illuminance of the image on the retin
(when the object is observed through the telescope) is
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LaD*A LnD?

2 = 2 2
4f“T
44> (fs' Ir’A f

Lndg
a7

When the object is viewed directly, the illuminance is, similarly,

LnD? Lﬂ?dg

We want —_—s 22—

So, T = g— = 20 on substitution of the values.
0

Obviously, f, = +1cm and f, = +5cm
Now, we know that, magnification of a microscope,

sl
T = (-—‘l - 1) D for distinct vision

fo f’
s 25
or, 50 = (T"—l) 5 or, v, = 11 cm.

Since distance between objective and ocular has increased by 2 cm, hence it will cause the
increase of tube length by 2cm.

so, sy =8,+2 =13
s' D

and hence, : I' =|=-2-1|= = 60
(fa )1:

It is implied in the problem that final image of the object is at infinity (otherwise light coming
out of the eyepiece will not have a definite diameter).

(a) We see that 92 B = |sy]2a, then

|So|
B=—

So

Then, from the figure

s'o
d=2f,ﬁ=2f,a/——|s|
0
But when the final image is at infinity, the magnification I in a microscope is given by

r=——- L (! = least distance of distinct vision) So d = 2! o/T
: e

2la

Sod =dy whenT =T, = = 15 on putting the values.
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(b) IfT is the magnification produced by the microscope, then the area of the image produced
2
on the retina (when we observe an object through a microscope) is : r2 (g) A

‘Where u = distance of the image produced by the microscope from the eye lens, f = focal
length of the eye lens and A = area of the object. If @ = luminous flux reaching the
objective from the object and d = d, so that the entire flux is admitted into the eye),
then the illuminance of the final image on the retina
-2
r? (f/s)*A

But if d = d2 then only a fraction (dp | d)? of light is admitted into the eye and the
illuminance becomes
wret b

e

independent of I'. The condition for this is then
dzdy or T sT,=15.

( 21a)?

5.50 The primary and secondary focal length of a thick lens are given as,

f=-/o){1-/n) @)
and f' =+ (n"/®) {1 - (d/n") <I>1} ,

where @ is the lens power n, n' and n" are the refractive indices of first medium, lens
material and the second medium beyond the lens. @, and P, are the powers of first and
second spherical surface of the lens.

Here, n =1, forlens, n' = n, for air
and n' = ny , for water.
So, f=—1/¢1},as d=0, 1)
and f = +ny/®

Now, power of a thin lens,

®=9,+9,,
where, P, = Q—;—l)
and P, = (n__-R_nz
So, ®=2n-n-1)/R V)]
From equations (1) and (2), we get,

f= =R =-112cm

2n-n-1)
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and f'———_(Zn-no-l)

= +14.9cm.
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Since the distance between the primary principal point and primary nodal point is given as,

X = f{(n” -n)/n”}

So, in this case, x = (ng/P)(ng-1)/ny = (ng—1)/®
np 1
-¢—¢-f+f-3'7ﬂll.

5.51 See the answersheet of problem book.

8.52 (a) Draw P X parallel to the axis OO’ and let PF interest

it at X. That determines the principal point H. As the
medium on both sides of the system is the same, the
principal point coincides with the nodal point. Draw
a ray parallel to PH through P'. That determines H'.
Draw a ray PX' parallel to the axis and join P’ X'.

That gives F'.

(b) We let H stand for the principal point (on the axis).

Determine H’ by drawing a ray P’ H' passing through
P’ and parallel to PH. One ray (conjugate to SH) can

be obtained from this. To get the other ray one needs
to know F or F'. This is easy because P and P’ are
known. Finally we get S'.

(c) From the incident ray we determine Q. A line parallel
to OO' through Q determines Q and hence H'.

H and H’ are then also the nodal points. A ray parallel "/’ F {/n
to the incident ray through H will emerge parallel to ) !
itself through H'. That determines F'. Similady a ray

parallel to the emergent ray through H determines F. ©)

5.53 Here we do not assume that the media on the two sides of the system are the same.
| .

i heoommo it

H:' R F H
by '
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5.54 (a) Optical power of the system of combination of two lenses,
D = d>1+<1>2—-dd>1<1>2

on putting the values,
® =4D

or, f-'ql)‘-zsan

Now, the position of primary principal plane with respect to the vertex of converging
lens,

x- 22240
= @ = cm

Similarly, the distance of secondary principal plane with respect to the vertex of diverging
lens.

ao
(X'=_ 1

= - 10 cm, i.e. 10 cm left to it.

(b) The distance between the rear principal focal point F’' and the vertex of converging lens,

1 dd (-dP;
"d’“(q))“‘”’*"z‘*( 3 )

do
and f/l= (_é))/q(’pd__q)l’ as f= —(i)

=1/d®-4dd,
= 1/d (D, + Dy -d D, D) -d Dy = 1/d D, -d* B, D,
Now, if f/1 is maximum for certain value of d then //f will be minimum for the same

value of d. And for minimum I/f,
d(/f)/dd= ®y-2d D, D,y= 0

or, d= @2/2 q)l q)z
of, d=1/2®;=5cm

So, the required maximum ratio of f/1 = 4/3.

5.55 The optical power of first convex surface is,

P(n-1)
0] ——Rl

and the optical power of second concave surface is,

= 5D, as Ry = 10cm

(1-n
$) = ~——= = -10D
2 R2

So, the optical power of the system,
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d .
P = q)l‘l'q)z—;q)le = -4D

Now, the distance of the primary principal plane from the vertex of convex surface is given
as,

1)\/(d
X = (6-)(;'—)(I>2,heren1 =1and n, = n.

-?-Scm

and the distance of secondary principal plane from the vertex of second concave surface,

R A VAL Y
{2

5.56 The optical power of the system of two thin lenses placed in air is given as,
D = ¢1+¢2—d®1¢2

1 1 1
or, ===+ where f is the equivalent focal length
A T
SO’ .1.. = éil___
f hih
_hh fz
or, 1
T fith-d @
This equivalent focal length of the system of two lenses is measured from the primary principal
plane.

As clear from the figure, the distance of the primary principal plane from the optical centre
of the first is

O,H=x = +(n/®)(d/n) ®, \
[]

L
dod, . . o :
= P as n=n'=1, for air.
L af
A
- d fih
(f1) fith-d
__4h
fi+tf-d

Now, if we place the equivalent lens at the primary principal plane of the lens system, it will
provide the same transverse magnification as the system. So, the distance of equivalent lens
from the vertex of the first lens is,

af
h+f-4d

X =
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5.57 The plane mirror forms the image of the lens, and water,
filled in the space between the two, behind the mirror, as
shown in the figure.

So, the whole optical system is equivalent to two similar
lenses, seperated by a distance 2! and thus, the power of
this system,

d®,
D=d,+D,- nlo 2 where @, = D, =P,

= optical power of individual lens and ny = R.I. of water.

Now, @' = optical power of first convex surface + eptical power of second concave surface.

- ny-n
- gn—R-ll + _QE—’ n is the refractive index of glass.

(2 n-ng-— 1)
- M
and so, the optical power of whole system,

2d"?
ny

D=2 - = 3-0 D, substituting the values.

5.58 (a) A telescope in normal adjustment is a zero power conbination of lenses. Thus we require

@-O=¢1+¢2—g¢1®2

n-1
R0+AR
n-1
Ry

. (r-DAR d_(n-1)
Ro(Ro + AR) n Ro (Ro + AR)

nAR
n -
S __S +_d_)< Sx.5
A 075 1.5 1 x 075

20 dx2 5x20_ 5 200d

3 3 7 3 BE)
200d 2

9 ~3 O d = (3/1000m = 3 cm.

But &, = Power of the convex surface =

®, = Power of the concave surface = —

Thus, (0]

So d-

= 4.5 cm. on putting the values.
(b) Here, @ = -1 =

=5

5.59 (a) The power of the lens is (as in the previous problem)

_n=1_mn-1 _dfn-1\( n-1) _dn-1’
R R | R '
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The principal planes are located on the side of the convex surface at a distance d from
each other, with the front principal plane being removed from the convex surface of the
lens by a distance R/(n-1).

n-1 n+1 Rz-R1(n—1)2
+ +

(b) Here & = - R1 R2 n Rl R2
(n-1) (R, - Ry) n-1
= R R, [-1+ =~ ] R1
Lomsi(lo1)
- n RI—RZ RZ

Both principal planes pass through the common centre
of curvature of the surfaces of the lens.

Let the optical powers of the first and second surfaces of the ball of radius R; be
P/ and &, then
(n-1)

® =(-1)/R;, and ' =(1-n)/ (-R) = x

This ball may be treated as a thick spherical lens of thickness 2 R;. So the optical power of
this sphere is,

Q=P -
Similarly, the optical power of second ball,
o, =2(n-1)/nR,

If the distance between the centres of these balls be d. Then the optical power of whole
system,

2R+W= 2(n-1)/nR, 1)

@ - ¢1+¢2—d¢1q)2
- 2(n—1)+2(n—1)_4d(n—1)2

an nR2 n2R1R2
_2gn-1! (R1+R2)—2d!n_1! .
nR{R, n

Now, since this system serves as telescope, the optical power of the system must be equal to
Zero.

2d(n-1) 2(n-1)
(Ri+Ry) -, > 3 —nR1R2=0.
n(Ry+Ry)
or, d = 201-1) =9cm.

Since the diameter D of the objective is 2 R; and that of the eye-piece is d = 2R,
So, the magnification,

R
_}'=R1R2=5.

2
F-D/d-2R2
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5.61

5.62

5.63

Optical powers of the two surfaces of the lens are

® = (n-1)/R and ®, = (1-n)/-R = n;I

So, the power of the lens of thickness d,
d2:® n-1 n-1 d@-1)/R n’-1
n R R n nR
and optical power of the combination of these two thick lenses,
O -0+t =20 - 20D
nR
)

2
So, power of this system in air is, ®, = P 2 (n2; 1 37D.
n

We cousider a ray QPR in a medium of gradually varying refractive index n. At P, the
gradient of n is a vector with the given direction while is nearly the same at neighbouring
points Q, R. The arc length QR is ds. We apply Snell’s formula nsin® = constant

where 0 is to be measured from the direction Vn. The refractive indices at Q,R whose mid

point is P are n=%|Vn|d9 cos 0
50 (n-%anldO cos 8) (sin9+%cosed9)
=(m + % |V n|ddcosB) (sin - %cose d0) or ncos® db = |Vn|ds cos 9 sin0

(we have used here sin (8 + %—d 0) = sinB = % cos 0 dO)
. - . 1 db
Now using the definition of the radius of curvature 3 ==

1, l|Vn| sin 0
pPM

The quantity | Vn|sin© can be called gf:l.— i.e. the derivative of n along the normal N to

the ray. Then 1 = -§—ln n.

p ON

From the above problem

%= %}?n ~ pVne|Vn|l=3x10"%m™*

( since }H?n both being vertical ). So p = 33 x 10" m

For the ray of light to propagate all the way round the
earth we must have

p=R=6400km = 64x10°m
Thus |Vn|=16x10""m™}
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5.2 INTERFERENCE OF LIGHT

5.64 (a)

(®)

In this case the net vibration is given by
X =a;coswt+a,cos(we+9d)

where 9 is the phase difference between the two vibrations which varies rapidly and
randomly in the interval (0,2 n ). (This is what is meant by incoherence.)
Then . x=(a;+a,cosd)coswt + a;sindsinwr

The total energy will be taken to be proportional to the time average of the square of
the displacement.

Thus E = < (a,+aycosd)’ +a3sin®d > = a°+a>
as < cos 8 > = 0 and we have put<coszmt> = <sinwt> = %—and has been absorbed

in the overall constant of proportionality.

In the same units the energies of the two oscillations are Ef and a% respectively so the
proposition is proved.

A A
Here 7= ajcosmti+azcos(wt+d)j
and the mean square displacement is o a% + a%

if 8 is fixed but arbitrary. Then as in (a) we see that E = E, + E;.

5.65 It is easier to do it analytically.

Ei=acoswt, & = 2asinwt

3 7 . X,
& = 2a(c<>s3cosmt—51n3smoot)

Resultant vibration is

)
sinwt
4 ]

§= 7—4a-cosmt+a(2-3

This has 4n amplitude = %\[49 +(8-3V3): =189a

5.66 We use the method of complex amplitudes. Then the amplitudes are

A =a,A =ae'®, ... Ay =ae'V"D?

and the resultant complex amplitude is

A=A +A+ ... +Ay = a(1+eiq’+e2iq’+_._+e"(N‘1)'P)

=aq
1-¢'°
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The corresponding ordinary amplitude is

567 (a)

®)

i 1-¢'® 1-e'N® 1_gN®
] = a 1-ei® ¢ 1-¢'° X 1-¢7%°
12 sinjl2
-a 2-2cosNog -a 2
2-2cos . @
sin >

With dipole moment 1" to plane there is no variation
with 0 of individual radiation amplitude. Then the in- P
tensity variation is due to interference only.

In the direction given by angle 8 the phase difference

is 1
Y
-2——’5(d00s9)+(p-2ku for maxima d
> Acos6
Thus dcosO= (k—-l)k
2x

k=0,£1,+2,.. 2 4

We have added ¢ to -Z—Ed cos O because the extra path that the wave from 2 has to travel

A
in going to P (as compared to 1) makes it lag more than it already is (due to ).

Maximum for 0 = & gives ~d= (k—-%)x

. - . N TR I §
Minimum for 6 = 0 gives d (k YA A

Adding we get (k+k'—m+—1-)h-0
Tt 2
This can be true only if k’=-k,qa=§
since O0<p<x
Then —d = (k-l)x
4
Here k=0,-1,-2,-3,..

(Otherwise R.H.S. will become +ve ).
Putting k = -k, k= 0,+1,+2,+3,...

1
d= (I‘fz))\



5.68

5.69

5.70

571
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If A @ is the phase difference between neighbouring radiators then for a maximum in the
direction  we must have

2% s O+Ap = 2nk

ik

For scanning 0 = o+ p

d Ag _
Thus kcos(a)t-vp)q»zu k
or Ap =2n k—%cos(mnb)]

To get the answer of the book, put f = o - x/2.

From the general formula

Ax-%
Ax I\
we find that " =J+2Ah
since d increases tod + 2 A h when the source is moved away from the mirror plane by A h.
Thus nd=d+2Ah ot d=2Ah/(n-1)
2AhAx
Finall A= ———==06um.
y (m-0i - ¥

We can think of the two coherent plane waves as emitted from two coherent pomt sources
very far away. Then

IA A
Ax= -
But 2-w(itye1)
so Ax = -)1.
vy
(@) Here §'S" ' =d = 2ra
ThenA x = (b+r)A
2a
Putting b = 1-3 metre, 7 = -1 metre
' 1 :
A=055um, a =12 = 5x57radlan

we get Ax = 1-1 mm
+1 w8341 m~9

Number of possible maxima = 2Ab xa
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(2b o is the length of the spot on the screen which gets light after reflection from both
mirror. We add 1 above to take account of the fact that in a distance A x there are two
maxima).

(b) When the silt moves by 8 / along the arc of radius r the ]incident ray on the mirror rotates

by grl ; this is the also the rotation of the reflected ray. There is then a shift of the fringe

of magnitude.

b-a;-l- = 13 mm.

(c) If the width of the slit is & then we can imagine the slit to consist of two narrow slits
with separation 8. The fringe pattern due to the wide slit is the superposition of the pattern
due to thése two narrow slits. The full pattern will not be sharp at all if the pattern due

to the twuvnarrow slits are %Ax apart because then the maxima due to one will fill the

minima due to the other. Thus we demand that
bd,x 1 (b+r)A
r 2 Ax = 4ra

ry A
or émx-(1+b)4a-42p.m.

5.72 To get this case we must let r — o« in the formula for A x of the last example.

(b+r)h _, M
Se Ax 2ar 2a’
(A plane wave is like light emitted from a point source at ).

Then A=2aAx = 0:64 pm.
5.73

+

| Qe ——————
f

LI

a

(a) We show the upper half or the lens. The emergent light is at an angle o

from the axis.

Thus the divergence angle of the two incident light beams is
a

V=T
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When they interfere the fringes produced have a width
Ax = L3 = f2 = 015 mm.
Y a

The patch on the screen illuminated by both light has a width b1 and this contains

by _bd’
Ax  §2)

. b
(if we ignore 1 in comparis on to X}}:— (if 5.71 (a) )

fringes = 13 fringes

(b) We follow the logic of (5.71 c). From one edge of the slit to the other edge the distance
is of magnitude & (i.c.% to %+ o )

If we imagine the edge to shift by this distance, the angle /2 will increase by > = ﬁ
)

and the light will shift = b of

The fringe pattern will therefore shift by bTb

Ax _fr J A
2 =24 we get O, >ab 37:5um.

1
AJc-Ti}l ¥ < AN
l=a+b
d=2(n-1)0a d 2 b
d=(n-1)0
d= 2da
n= RI of glass
Thus A= M. =064pum.

a+b

Equating this to

>

It will be assumed that the space between the biprism and ===
the glass plate filled with benzene constitutes ~— ==
complementary prisms as shown. O \—==:

1

Then the two prisms being oppositely placed, the net i
deviation produced by them is .
8=(n-1)0-(n-1)0 =(n-n')0
Hence as in the previous problem -7=

d=2ad=2a0(n-n") ==

So Ax = La+bIM ==

T 2a0(n-n') —T
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For plane incident wave we let a— ®

A
o Ax-za(n_n,)-Ome.
5.76 Extra phase difference introduced by the glass plate is
2x
Y (n-1)h
This will cause a shift equal to (n-1 )% fringe widths
i.c. by (n—l)%x%-g%l-h—l-hnm.

The fringes move down if the lower slit is covered by the plate to compensate for the extra
phase shift introduced by the plate.

5.77 No. of fringes shifted = (n' - n)-;l: =N

SO

578 (a)

()

n = n+1-!1& = 1-000377 .
— —» —»
Suppose the vector E, E', E" correspond to the incident, reflected and the transmitted
wave. Due to the continuity of the tangential component of the electric field across the
interface, it follows that
E.+E, = E'; 1)

where the subscript v means fangential.
—

The energy flux density is ExH=5.
Since HVupy = EVee

H=EV2Vep anY 2E
™ ™

Now S .. nE? and since the light is incident normally

nE: = nE?+mE™ (V)]
or n(E2-E%) = mE/”
Y n (E‘t -E‘t, ) = n2Et" (3)
" 2 ny

Since E.” and E_ have the same sign, there is no phase change involved in this case.

From (1) & (3)
(my+m)E/+(my-n)E, =0

,  Mh-m
o E n+n

E,.
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If ny>n,, then E & E, have opposite signs. Thus the reflected wave has an abrupt
change of phase by = if ny > n, i.e. on reflection from the interface between two media
when light is incident from the rarer to denser medium.

5.79
= (2)
Path difference between (1) & (2) is
2ndsec0,-2dtan 0,sin 0,
.2
0
n— s 0y
=2d——L—— = 2dV #?-sin®0,
sin? 0,
n
For bright fringes this must equal (k + -;—) A where %— comes from the phase change of n for
L)
Here k=0,1,2,..
Thus 4dV nz—sinzel =(2k+1)A
or d=—20*28)  _oi40420pm.
Wt sin® 0,
5.80 Given

2dVn?-1/4 = (k+%)x0'64um ( bright fringe)

2dVn*-1/4 = ¥ x040pm  ( dark fringe)

where k, k' are integers.

Thus 64(k+2|= 0K or 4(2k+1) = 5K
This means, for the smallest integer solutions
k=2, K =4
4 x 0-40

Hence d = (065um.

2V n!-1/4
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5.81 When the glass surface is coated with a material of RL n' = Vn ( n = R of glass) of

appropriate thickness, reflection is zero because of interference between various multiply
reflected waves. We show this below.

Let a wave of unit amplitude be normally incident from
the left. The reflected amplitude is —r where

LS Incident =1 &

Va+l t 2

Its phase is -ve so we write the reflected wave as - r. < 4

The transmitted wave has amplitude ¢ ~h e -th ?

2 ~tep———rV)

t = _ [/

1+y, t % 7

This wave is reflected at the second face and has amplitude < /

—tr +th3 /

< 4

because ™= Vn Vn-1 ttd

nev, Vpt+l

The emergent wave has amplitude —¢ ¢ r.

We prove below that -¢¢ =1 -r2 There is also a reflected part of emplitude

trr' =-tr? where r' is the reflection coefficient for a ray incident from the coating towards
air. After reflection from the second face a wave of amplitude

+etrd = +(1—r2)r3
emerges. Let O be the phase of the wave after traversing the coating both ways.
Then the complete reflected wave is

—r=(1-r)reft+(1-r?)rie??®

—(1-r2)r5e?’“s ......
; 1
=-r=(1-r¥)re®————
1+r2e’®
2 i 2y id 1
-—r[l+r e’+(1-r%e ]m
, 1+e‘®
1+r’e*®

This vanishes if 8 = (2k+1)x. But
d = -2—)? 2Vndso

A

d = = (2k+1)




We now deduce 1 = 1-r2and r' = +r. This follows
from the principle of reversibility of light path as shown
in the figure below.

tr+r?=1
-rt+r't =0
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T P

r' = +r.

(- r is the reflection ratio for the wave entering a denser
medium ).

5.82 We have the condition for maxima

2dV n?-sin’ 0, = (k+ )A

This must hold for angle 0 + 58 with successive values of k. Thus

Zd\/n2-sm (e+§29) - (k——;-)k
24\ n?—sin (9-5—9) - (k+%)k

Thus k=2d{\/n2-sin29+695in6cose

—V n2_sin20 -0 0sin 0 cos 0 }
d 00sinBcosO

Vn?_sin’0

2 .2
n°-sin“0 A
Thus d = “sn2050 - 152 pum

5.83 For small angles 8 we write for dark fringes
sin® 0

2dV n®-sin%0 =2d(n- ™ )=(k+0)x

For the first dark fringe 6 « 0 and
2dn = (k+0)A

For the i dark fringe

.2
2d(n-5“2lnei] - (kg—i+1)A

r2

9=—— i-1) = '
or sin ( ) YL
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~‘
el Ty
==
-
-
"
-

-k———C—-*——t—”'

2 2
. ) rg=rg
Finall RMCi-k) =
y k) =
d(r’-n’)
so T PP
41°n(i-k)
5.84 We have the usual equation for maxima
V r? - sin? 1
2ha’V n®-sin 9‘1 k+2)}» dark
Here h; = distance of the fringe from top \
hyo = dy = thickness of the film ~
Thus on the screen placed at right angles to the reflected
light hk £
Ax = (h,,—h,,_l)cosﬂl
A cos 0,
2ay n* ~sin? 0, TdK\

5.85 (a) For normal incidence we have using the above formula

Ax =

2no

S0 a = = 3’ on putting the values

2nAx

(b) In a distance / on the wedge there are N = KI; fringes.

If the fringes disappear there, it must be due to the fact that the maxima due to the

component of wavelength A coincide with the mainima due to the component of
wavelength A + A A. Thus

. 1 A
Nh = (N-E)(Mu) or AN = S
SO A—’-"— 1 Ax 942-1—-0-007.

A 2N 217 30
The answer given in the book is off by a factor 2.
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5.87

5.38

5.89

5.90
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We have

2w kAR
So for k differing by 1 (Ak = 1)

1 1
2rAr = 2AkkR - 2AR
AR
or Ar = ar

The path traveresed in air film of the wave constituting the k™ ring is
r2 1
i) kA
when the lens is moved a distance Ak the ring radius changes to 7 and the path length
becomes
,_12
T 2Ah = - kA

Thus r'=Vr2-2RAh = 1-Smm.

2

R
This must equals (k—1/2)A ( where k = 6 for the six® bright ring.)

. . . T 0
In this case the path difference is for r>ry and zerofor r= ry.

Thusr-\/ (k--)kR = 3 8mm

From the formula for Newton’s rings we derive for dark rings

d;’ d
L o b RA, 2 = BRA
s0 e w ),
4(ky-k )R

Substituting the values, A = O-Spum.

Path difference between waves reflected by the two convex
surfaces is

2L, 1
R, R;

Taking account of the phase change at the 2™ surface we
write the condition of bright rings as
,2 1. 1) _2k+1 A

R, 'R, 2
k = 4 for the fifth bright ring.
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59

592

1 1 9 4 18 A
Th —t— = M — =
" R1+R2 2)‘d“’ ar
1 1 1 1
Now T m(n=-1)=—, = = 1)—
1 1 1 18 A
so = —+-mw(n-1)—F5 =P = 240D
FrRtE (e
Here n = R of glass = 1-5.
2 2
Hcre¢=(n-l)(R1—R2)
1 1 )

s e - ——
° R, Ry~ 2(n-1)
As in the previous example, for the dark rings we have

2(1 1) __ @ o
"\RTR | T Ty " kA
k = 0 is dark spot; excluding it, we take k = 10 hre.

Then r= VM_—I) = 3-499mm.

0]
(b) Path difference in water film will be

nor?[ - -2
" |R Ry
where 7 = new radius of the ring. Thus

no;z = "2

or T=r/Vn, = 303mm.
Where ny = R.I. of water = 1-33.

The condition for minima are

,},Tan = k+-;— A,

(There occur phase changes at both surfaces on reflection, hence minima when path difference
is half integer multiple of A).

In this case k = 4 for the fifth dark ring

(Counting from k& = O for the first dark ring).

Thus, we can write

r=V(2K-1)AR2n, ,K =5
Substituting we get r = 1-17mm.

5.93 Sharpness of the fringe pattem is the worst when the maxima and minima intermingle :-

nmh = ("1—%))‘2
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5.95

5.96
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or putting M=A, M =A+AAN
we get nlAk-%

A
or A !

M AR " 20g-2y) - 1O

Interference pattern vanishes wnen the maxima due to one wavelength mingle with the minima
due to the other. Thus

2Ah =kMy = (k+1)\
where Ak = displacement of the mirror between the sharpest pattems of rings

Thus k(2-2) = N
A
or k=
M-
2
So Ah My A 29mm.

T 2(M-M) C2AM

The path difference between (1) & (2) can be seen to be

A =2dsecB-2dtan Osin 0

= 2dcos® = kA
for maxima. Here k = half-integer.

The order of interference decreases as O increases i.e. as

the radius of the rings increases. r
(b) Differentiating Y
2dsin080 = A
S>)
on putting 0k = -1. Thus
)\’ .
86 = 2 dsino 2)
0 O decreases as 0 increases. - J

(a) We have ko, = 3;- for 6 = 0.= 10°.

(b) We must have
2dcos® = kA = (k-1)(A+ARr)
2

1 A AN .
Thus " 24 and AN = t~2d - S pm. on putting the values.
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5.3 DIFFRACTION OF LIGHT

5.97

5.98

5.99

5.100

The radius of the periphery of the N™ Fresnel zone is
Ny = NbA
Then by conservation of energy

Iyn(VNbA Y = [ 2nrdri(r)
0

Here r is the distance from the point P.

2 -]
Thus I, -Nbx{ rdri(r).
By definition
abk
r'Z‘ .ka+b

for the periphery of the k" zone. Then
arl+bri = kab)

2

So b= ar,,z’ ar22
kah-ry kal-r

on putting the values. (It is given that r = r;) for k = 3).

= 2 metre .

Suppose maximum intensity is obtained when the aperture contains k zones. Then a minimum
will be obtained for k + 1 zones. Another maximum will be obtained for k + 2 zones. Hence

ab.
r% = k)“a+b

ab

r%-(k+2)xa+b

+b
ab

IS

Thus A=

(-12) = 0598 pum

[ )

On putting the values.

(a) When the aperture is equal to the first Fresnel Zone :-

The amplitude is A; and should be compared with the amplitude f-;— when the aperture is

very wide. If I is the intensity in the second case the intensity in the first case will be
4 I,

When the aperture is equal to the internal half of the first zone :- Suppose A;, and A,
are the amplitudes due to the two halves of the first Fresnel zone. Clearly 4;, and A,,
differ in phase by -;—- because only half the Fresnel zone in involved. Also in magnitude
| 4ia| = |Agu|. Then
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5101 (a)
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A2
A = 2|4, P so |ALF = ?1

Hence following the argument of the first case. I;, = 21,

The aperture was made equal to the first Fresnel zone and then half of it was closed
along a diameter. In this case the amplitude of vibration is ‘521 Thus

I=1.
Suppose the disc does not obstruct light at all. Then

Ago + Aromsinier = %A,,,-,,

(because the disc covers the first Fresnel zone oaly).
S04, piinde = - -;—A,,-,,
Hence the amplitude when half of the disc is removed along a diameter

1 1 1
- EAd;_x "'Amnal'miq - EAM -EAM -0
Hence I = 0.
In this case
A= %Am"‘Am
1 1
= EAmd - EAE
We write Aspe = Ay +iAn,

where A;, (A, ) stands for A, pma ( Acgena )- The factor i takes account of the % phase

difference between two halves of the first Fresnel zone. Thus

A=-3A, and I=Al
On the other hand Io = 5 (4L +A%) - %A?,,,
1
SO I= ‘2'10.
5.102 . . A | o .
When the screen is fully transparent, the amplitude of vibrations is -2-A1 (with intensity
1

I = ZA% ).
(a) (1) In this case A = 3 lA so squaring ] = —9—1

= a|2™ qHarng £ = 1g o
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(2) In this case % of the plane is blacked out so
1/1 1
A -5(2A1) and 1-410

(3) In this case A = 7 (A, /2) and I = =l

. 1(1 . 1 1
(4) In this case A = E(EAI) again and I = ZIO so Iy = 5

2

In general'we get I(@) = Io(l—(‘z%))

where @ is the total angle blocked out by the screen.
3(1 1
(b) (5) Here A = —4-( 2A1)+4A1

A, being the contribution of the first Fresnel zone.

Thus A= %Al and I = %56-10
\
(6) A= —;- %Al +%A1 = %Al and I = %’Io
(7) A= %’ %Al +%A1 = ';_Al and [ = ':—2~Io
1(1 1 3 9
(8) A = —2- EAl +EA1 = ‘4'A1 and | = ZIO (Ig = 16)

In 5 to 8 the first term in the expression for the amplitude is the contribution of the plane

part and the second term gives the expression for the Fresnel zone part. In general in (5) to
2

®I=1I [ 1+ (-2%‘-)) when @ is the angle covered by the screen.
5.103 We would require the contribution to the amplitude of a
wave at a point from half a Fresnel zone. For this we P
proceed directly from the Fresnel Huyghens principle. The
complex amplitude is written as

E=f1<(cp)%e'“"ds b

Here K (@) is a factor which depends on the angle @
between a normal 7'to the area d S and the direction from
dS to the point P and r is the distance from the element
dsS toP.

We see that for the first Fresnal zone




2
(using row b+-225 (for V p?+b? ))
Vb
)

. . 2
0

For the first Fresnel zone r = b+A/2 so r* « b*>+bAand p*> = bA.

b
% _ikb p _ikx
Thus E-Fe 2n{e b dx
a ) —ikn2 _
- Db e -1
b -ik/b
a . .
= omien ™ (~2) = - 2Eig et w4
k k
For the next half zone
3b2
4
a , .
E = Eo-e"“’2:rt e P axx
bi
2
a ; 113 i
=_02nie—;kb(e-t T _e kvz)
k
; A (1+1i
- ﬁk‘lzm‘ e (+14i) = - ———‘(2 2
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If we calculate the contribution of the full 2* Fresnel zone we will get — A;. If we take

account of the factors K (¢) and %—which decrease monotonically we expect the contribution

to change to — A, Thus we write for the contribution of the half zones in the 2™ Fresnel

Zone as

RCIELY) B HE e

The part lying in the recess has an extra phase difference equal to — 6 = - _2%1:_ (n - 1)h. Thus

the full amplitude is (note that the correct form is e™**")

A . A
(A,-—z-z-(ui))e““ - 32-(1-i)+A3_A4+...

Alioiy)erd B2
-(2(1-1))e —2(1—z)+2
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Az

_(l—l) e’ +l"_(lsA2 ~A3 ~A1)andA3 A4+A5 7.
The corresponding mtenslty is
1-—[(1 e*tity ][(1+1)e"° i]

=Ip[3-2cosd+2sind] = Io[3+2\/_sin(6 - %)]

(a) For maximum intensity sin(b -%) =+1
or b-Z-an+2, k=012,
3n
6-2ku+-4—-—('l 1)h
A 3
SO h= n—l(k+§)

(b) For minimum intensity

Tn
S0 h = o (k+ 3 )
(c) ForI = I, cos 8 = 0] or [ sind =0
sin § = -1 cos § = +1
Thus 0 =2kn h= k)
n-1
3n A 3n
or 6=2kn+2,h _(k+4)
5.104 The contribution to the wave amplitude of the inner half-zone is
.kb\/ bA2
2 -t g ol
ﬂaobe J' e-.kp/szdp
0 -)/Ié-
—_—
~ikb bw4

2mage —ikx/bdx —_—

B — e

— J
0
- 1
2mage”’ (e- iV _1)x -bik

= b
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2miage t*? ] A, .
= X (-z-l)=+?(1+1)

A -
With phase factor this becomes —2—1( 1+i) ¢'® where 8 = 2—;?( n-1) h. The contribution of

A
the remaining aperture is —2—1( 1-1i)

(so that the sum of the two parts when d = G is 4, )
Thus the complete amplitude is

' 4, . is A1 .

2(1+1)e +2(l—l)

and the intensity is
T=IL[(1+i)e®+(1-i)][(1-i)e P+ (1+i)]

=I[2+2+(1-ile P4 (1+i)e’?]

=Ih[4-2ie "0 +2ie'®] = I)(4-4sind)
2

A
Here I = Tl is the intensity of the incident light which is the same as the intensity due to

an aperture of infinite extent (and no recess). Now

I is maximum when sind = -1

or 8 = 2kn+E
2
so h-nf1 (k+:3{) and (b) [ = 81).
We follow the argument of 5.103. we find that the contribution of the first Fresnel zone is

A
For the next half zone it is - 72( 1+1¢)

A
(The contribution of the remaining part of the 2" Fresnel zone will be — —2—2 1-9)

If the disc has a thickness A, the extra phase difference suffered by the light wave in passing
through the disc will be
6= 2% (n-1)h.

Thus the amplitude at P will be
A s A
EP = (AI—TZ(I“’I.))C-‘&—‘%(I—i)+A3—A4—A5+...
\

A (1-0)) s PAL A Sy —ib
-(—2 )e A (EE Y]
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5.106

5.107

5.108

The corresponding intensity will be
I=1(3-2cosd-25sind) = 10(3-2\/?sin{5+§))

The intensity will be a maximum when '

sin(&«vl‘:-) =- -1

n 3n
or 6+4 =2kmn+ )
ie. 4= (k+g-).2n
A S
S0 h-n-l (k+8)l;k-0,1,2,...
Note :- It is not clear why k = 2 for h,;,.The normal choice will be k = 0. If we take

k = 0 we get h;, = 0:59 pm.

Here the focal point acts as a virtual source of light. This
means that we can take spherical waves converging
towards F. Let us divide these waves into Fresnel zones
just after they emerge from the stop. We write

r2=f2-(f-hP=(b-m\/2) - (b-h) IN,
Here r is the radius of the m™ fresnel zone and A is the r P

distance to the left of the foot of the perpendicular. Thus & f'.'. ,
P w«2fh=-bmA+2bh l

So h=bmA/2(b-f)

and r* = fobmA(b-f).

The intensity maxima are observed when an odd number of Fresnel zones are exposed by the
stop. Thus

r = %’%} where k = 1,35, ...

For the radius of the periphery of the k™ zone we have
|

ab ' VEND ifa=o.

a+b

If the aperture diameter is reduced v times it will produce a similar deffraction pattern (reduced

7 times) if the radii of the Fresnel zones are also m) times less. Thus

n = k)\'

r'y =n/m
This requires b’ = b/n>

(a) If a point source is placecd before an opaque ball, the diffraction pattern consists of a
bright spot inside a dark disc followed by fringes. The bright spot is on the line joining
the point source and the centre of the ball. When the object is a finite source of transverse
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diamension y, every point of the source has its corresponding image on the line joining
that point and the centre of the ball. Thus the transverse dimension of the image is given
by

, b
y=,y= 9 mm.
(b) The minimum height of the irregularities covering the surface of the ball at random, at
which the ball obstructs light is, according to the note at the end of the problem, com-

parable with the width of the Fresnel zone along which the edge of opaque screen passes.
So Boin ~ Ar

To find A r we note that

2. klab
a+b
or 2rAr=DAr = 220,
a+b
Where D = diameter of the disc (= diameter of the last Fresnel zone) and Ak = 1

Aab
Thus Ay, = D(a+h) = 0-:099 mm.

5.109 In a zone plate an undarkened circular disc is followed by a number of alternately undarkened
and darkened rings. For the proper case, these correspond to
1%, 2™ 3" . Fresnel zones.

Let r; = radius of the central undarkened circle. Then for

this to be first Fresnel zone in the present case, we must
have

SL+LI-SI=2\2
Thus if r; is the radius of the periphery of the first zone

- L

\/a2+r%+\/b2+r§-(a+b)-% IL

2 §//'\

rnf1.1 A 11 1 ° +

A2 -2 143 a a
or 2(a+b) 5 o 4% P { b I
It is clear that the plate is acting as a lens of focal length

"3 ab
1=-x=a+b=-6mette.

This is the principle focal length.
Other maxima are obtained when

SL+LI-SI = 3L 5)"

50 5-,
7
3

2
r
These focal lengths are also , BLA.’
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5.110 Just below the edge the amplitude of the wave is given by l l l A ‘ l J
A= %(AI—A2+A3-A4+...)e"‘

h

1

+';‘(A1 -A2 +A3—A4+ ...)

Here the quantity in the brackets is the contribution of various Fresnel zunes; the factor 1 is

to take account of the division of the plate into two parts by the ledge; the phase factor d is
given by
2n
0= x h(n-1)

and takes into account the extra length traversed by the waves on the left.

A
Using A=Ay +A3-Aut ... = —2—1
A .
we get A= (1+e®)
and the corresponding intensity is
2
1 ) A
I= 10_1_‘2’2';—. where I, « (71)
(a) This is minimum when
cosd = -1
So O =(2k+1)nm
A
and h-(2k+1)2(n_1), k=012,..

using n = 15, A = 0-60um
h=060(2k+1)pum.

(b) I = Iy/2 when cosd = 0

or 6-kn+%-(2k+l)§-
Thus in this case h=030(2k+1) um.
5.111 (a) From the Cornu’s spiral, the intensity of the first maximum is given as
Im'l = 137 Io
and the intensity of the first minimum is given by
Iy = 078 1
so the required ratio is
I
== . 176

Iin
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(b) The value of the distance x is related to the parameter v in Fresnel’s integral by
v = x\/ 2
ba’
For the first two maxima the distances x,, x, are related to the parameters v;, v, by

1/b)~ .‘/b).
X = _2_‘)1)-x2’= TV2
Thus (vz—vl)vb—z)'-' =Xy—-Xx; = Ax

2
b Vo=V

From the Cornu’s spiral the positions of the maxima are
V) = 1'22, Vy = 2'34, V3 = 3.08 etc

2
D 2( Ax
Thus k-;(m) = 063um.

5.112 We shall use the equation written down in 5.103, the Fresnel-Huyghens formula.

e . oo . - — - e e curmn e

s, - — - > - ———— — - o — 4 xz

P

NN
O~

I

Suppose we want to find the intensity at P which is such that the coordinates of the edges
(x-coordinates) with respect to P are x, and - x;. Then, the amplitude at P is

E=[K(9) % e-i*ras

We write dS = dxdy,y is to integrated from — o + 0:+ o .We write

r-|b+:‘42—+ﬁ ¢))

2b

(r is the distance of the element of surface on I from P. It is V b2+x*+y* and hence
approximately (1)). We then get
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[ » =%
2 2
E -Ao(b)fe""/“ dx+ fe"'“‘/”dx
h - 00

-

xd i
= A5 (b) e ' 2 du+ e "% du
V, -®
‘/ 2 ‘/ 2
where vy = By X V1= PR

The intensity is the square of the amplitude. In our case, at the centre

v = v \/——-\/_=064

2b)
(a = width ofthe strip = 0-7mm, b = 100cm, A = 0-60 um )
At, say, the lower edge v =0, v, = 128
Thus
re i 1 2 (1 2
fe"“/zdu+ f e M2 gy (——C(0~64)) +(—-S(0~64))
I 2 2
centre = 064 -
I (1-C(128))°+(1-5(128))*
e f e—u:u/2du+ f e ixu/2d
w2
where C(v)-fcos-———du
S(v) f L
v) =) sin=—du
0
Rough evaluation of the integrals using cornu’s spiral gives
I A
Latie 9.4
Logge
® 2 2
(We have usedfcosn—zu—du -fsin%‘—du - -;—
0 0

C (064) = 062, S (0-64) = 0-15
C (1:28) = 0-65 S (1-28) = 0-67
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5.113 If the aperture has width % then the parameters (v, - v)

5.114

associated with (h/2 , = g) are given by 2
+h
v-%\/f—i - h/V2b2 /2

The intensity of light at O on the screen is obtained as the b
square of the amplitude A of the wave at O which is ’
2 ~hp

\4
. 2

A _ constfe_”“‘/zdu

-v
Thus I'=2L((C(v)P+(S()))
where C(v) and S(v) have been defined above and I, is the intensity at O due to an
infinitety wide (v = o) aperture for then

2 2
1 1 1
I = 210((5) + *2-) ) - 210x—2- = Io.
By definition v corresponds to the first minimum of the intensity. This means
Vv =y =90

relates to the second

when we increase h to h+Ah, the corresponding v, =

2bA
minimum of intensity. From the cornu’s spiral v, ~ 2-75
Thus Ah =V2bA (v3-vy) =085V2bA
2 2
Ah 1 0-70 1
or *'(m)n '(0-85)2x0-6"m = 0565 pm

Let a = width of the recess and

a‘/2 a 0-6
v-2 bk -060

V2ba V2x077x065
be the parameter along Cornu’s spiral corresponding to the half-width of therecess.
The amplitude of the diffracted wave is given by

v [ ] v
. . 2 N 2 . 2
const e'°fe'”“‘/2du+f e'”"‘/zdu+f e~ imu72 gy
- 00

-V v

~

where O-ZT“(n-l)h

is the extra phase due to the recess. (Actually an extra _é -«

phase e i® appears outside the recess. When we take it A I 0
out and absorb it in the constant we get the expression

written). I a LI l
Thus the amplitude is Vv
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_ const [(C () -iS@) e+ -;—-C(v)) i %-sm
From the Cornu’s spiral, the coordinates corresponding to the parameter v = 0-60 are
C(v) =057,8(v) =013
so the intensity at O is proportional to

|[(0-57-o-13i)e"° - 007-i037]|’
= (0:57*+0-13%) + 0-07° + 0:37°
+(057-013i)(-007+037i)e®
+ (057+013i)(~-007-i037i)e"*®
We write
057 5013 i= 0585 e*i® o = 12:8°
-007+ 037 i= 6377 e*'P B = 100-7°

Thus the cross term is
2 x 0-585 x 0-377 cos (0 + 88°)
~ 2 x 0-585 x 0377 cos (a +§)

For maximum intensity

m% =2kn, K =1,234,..

=2(k+1)n, k=0,1,2,3,...

or d=2kn+ 3—;—-
A 3
so h = —) (k-r 4)
5.115
//A’///} h
e a-l
! |
bi :
| ]
! 1
! !
TITTTITITITIIITTITI7777 screen
1 2
Using the method of problem 5.103 we can immediately write down the amplitudes at 1 and
2. We get :
0 . 2/2 io y . 2/2
Atl amplitude A, _ const | [ e du+e ™ [ e  du

- v



-y ©
. 2 . . 2
At 2 amplitude A, _ const fe""“/zdu+e"°f e~ %/ 4
- 00 0

1/2
where v=g b

is the parameter of Cornu’s spiral and constant factor is common to 1 and 2.
With the usual notation

C = C(_v) -fcosﬂziz-du
0

v 2
S =S(v) = [sin=-du
0

@ 2 bl 2
and the result fcos Ezu—du -fsinz%u—du - %
[} [

We find the ratio of intensities as

1 (L —ia(1-i) 2
I (Z—C)—t(z—S)+e >
2

o R R

(The constants in A; and A; must be the same by symmetry)

In our case,a = 0-30mm, A = 065um, b = 1-1m

.‘/ 2
v = 0-30 x m = 0-50

C(0-50) = 0-48 5(0-50) = 0-06

. 2
I 0-02-0-44i+e".5M
2

2 1+(002-044i)V72 37

J7A Y

2
But 002 -044i = 0-44¢'®, a = 1:525 rad (~ 87-4°)

. . ix
l 2 lei®4002-044i 1+(002-044i)V2e 2+ %

176

. 2
o b 1+044xV2 x e'(2-0740) 1+2(044)2+2V 2 x 044 cos (8 - 0-740)
I [ 1+044xV2 xe (3+070) | "9 1 2(044)2+2V 2 x0-44 cos (& + 0-740)
I, is maximum when 8-0740 = 0 (modulo 2x)

L 1-387 + 1245 . 2:632
I, 1387 +1-245cos (148) 15

Thus in that case w~ 175
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5.116 We apply the formula of problem 5.103 and calculate

L3emaf S

Semicircle Slit
The contribution of the full 1* Fresnel zone has been evaluated in 5.103. The contribution of
the semi-circle is one half of it and is
-zTniaoe-“‘b = —iaghe
The contribution of the slit is

-ikb

090V b 2
2
%o f e kb i 2bdxf -iky72b g,
0

2
Now f ~iky'/2b dy = f bA( dy

\/ 92_7» fe-iuu’/zdu = VBN e-iv

Thus the contribution of the slit is

09xV2
fp_,/"’"bx p-ikbmin f e—ixu2/2 du bh
b . 2
0
127

T 1 Cindin
-a ke ikb-inv/4 _1 f e %2 g4
0 ﬁ A

Thus the intensity at the observation point P on the screen is

2 . . 2
-iS(1-27))\ - ag;g\_,+£1-z)(o~g7-o.65,)

a% A2

(on using C (127) = 0:67 and S(1-27) = 0-65)
= 22| -i+001-066i|
- a222|001-166i |
= 276 a3 \?

Now aj A2 is the intensity due to half of 1% Fresnel zone and is therefore equal to I (It can

also be obtained by doing the x—integral over— ® to + ).
Thus I1=2761,.
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5.117 From the statement of the problem we know that the width of the slit = diameter of the first
Fresnel zone = 2V b A where b is the distance of the observation point from the slit.

We calculate the amplitudes by ;Z (R AN R/ XA /,’,’1{'/’//7}
evaluating the integral of problem 5.103 /791 07 30)'2
4 A
We get - 9900715915 5014%517410,7777 007
-]
2 2
a - ik ik
A = —l;o- f e ¥t kg dxf e *35 dy
Vb 0
V2 w
a ; .2 .2
=% -iks _l?_lf i 2 gy | omin2 g,
b 2
V2 0

]
~
[
|
-~
~—
1)
1
>
o
—
Q
—~
N
~——
|
-~
%)
—~
3
~——
~——

Vbr @
= 24,
4 = —iao)\.e'”"’ffm%g(c(ﬁ)-is(ﬁ))e"“"’

where the contribution of the 1% half Fresnel zone (in A3, first term) has been obtained from
the last problem.

. . o2
Thus 11=a(2)):/2_l(1-1)(053—0721)
2

2
(onusing c(\/?) = 053, s( ) = 0-72)
= @232 | -0095 - 0625 | = 0:3996 a2 2
I = 41,
Iy = @232 | -0:095 - 0-625i i |
- a22?| -0095-1-625i |
= 2:6496 a2 A2
So I = 661,
Thus I:0: ;3 m 1:4:7
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5.118 The radius of the first half Fresnel zone is V b A/2 and
the amplitude at P is obtained using problem 5.103.

-awVbN2
_‘_1_9_ -lkb— —
A-b f 2bdx P
'qV
L) Vb2
.2 2 .
fe—nky/Zbdy+ %e—nkbfe-:kpzﬂbznpdp.
- 0
-nVbi2
vy 2

We use f e k=2 gy

-f e ikx/2b 4y -f e—':i dx

N nvV b2

[ (2
_f -ixu/2 ba du = 957\-_ [J‘_J‘) e-mul’l du
0 0
n
bA 1

- 7((—-6(71)) (Z—S(n)))

Thus A=a05x2 x(l—i)e"“’[(%-C(n))

where we have used

Va2

eq 2
fe—lkp/2b 2J|:pdp

0

—i) = Tb( —i) = Ab(1-i)

Thus the intensity is
2

I=|AP = a?,ﬁxz[(3/2-C(n))2+(%-5(n)) ]
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From Comu’s Spiral,
C(m) = C(107) = 076
S(n) =5(1-07) = 050
I= ag)»2><2><(0-74)2 = 1-09 a2 )\
As before Io= a22? so Iw 1.

of width b and the diffracted wave is observed at a large
distance, the resulting pattern is called Fraunhofer
diffraction. The condition for this is b* < /A where [ is
the distance between the slit and the screen. In practice

light may be focussed on the screen with the help of a i
lens (or a telescope). A=xsSin¢&

If a plane wave is incident normally from the left on a slit ‘

Consider an element of the slit which is an infinite strip
of width dx. We use the formula of problem 5.103 with
the following modifications.

The factor % characteristic of spherical waves will be omitted. The factor K ( ¢ ) will also be

dropped if we confine overselves to not too large @. In the direction defined by the angle
@ the extra path difference of the wave emitted from the element at x relative to the wave
emitted from the centre is

A= —-xsing

Thus the amplitude of the wave is given by
+b/2

i ksi ilipsi il ey
o felksmqadx - (ex2kbsm(p_e nzkbsmqa)/ i ksin @

-b/2
zb sin
x P
-Esm
y P
sin® o
Thus I=1
where o = Z—;\k sin ¢ and

I, is a constant
Minima are observed for sina = 0 but a= 0

Thus we find minima at angles given by
bsing = kh, k=212 =3 ...
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5.120 Since /(o )is +ve and vanishes for bsingp = kA i.e for a = kx, we expect maxima of
I(o)between o = +x & a = +2x, etc. We can get these values by.

d sina d sina
da T =h2==as~ =0
53—‘53—2'—91‘—‘—‘-:0 or tano = q

a
Solutions of this transcendental equation can be obtained graphically.

The first three solutions are
a;, =143n a, = 246n, a3 = 347 n
on the +ve side. (On the negative side the solution are - a;, — o, ~ 03, ... )

Thus bsing; = 1-43 A
bsingp, = 2:46 A
bsingpy = 347
Asymptotically the solutions are
bsing, = (M'P-;') A
5.121 The relation bsin 6 = kA

for minima (when light is incident normally on the slit ) has a simple interpretation : b sin 0 is the
path difference between extreme wave normals emitted at angle 0

—
b
—_
—>

When light is incident at an angle 0, the path difference is
b(sin®-sin @)
and the condition of minima is
b(sinB-sinBy) =kA
For the first minima

b(sin@-sinBy) = + A or sin® = sin By %

Putting in numbers 6y = 30°, A = 0-50pum b = 10pum
1

. 1
Sin@ = 2: 20 - 0-55 or 0-45

0,; = 33°-20' and O_; = 26°44’
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5.122 (a) This case is analogous to the previous one except that
the incident wave moves in glass of RI »n. Thus the
expression for the path difference for light diffracted
at angle O from the normal to the hypotenuse of the
wedge is

b (sin 6 - nsin @)
we write 0=0+A0
Then for the direction of principal Fraunhofer maximum

b(sin(®+A0 )-nsin®) =0

or AO =sin"'(nsin®)-0
Using © = 15° n = 15 we get
AB = 7-84°

(b) The width of the central maximum is obtained from (A= 060 pm, b =10 pm)
b(sin@,-nsin®) = = A
Thus 0,; = sin™* (\n sin © + % ) = 26:63°

b
50 =10,,-0_, = 747°

0., =sin~! (nsineﬁ) = 19-16°

5123

The path difference between waves reflected at A and B is
d(cosoy-cosa)
and for maxima
d(cosog-cosa) = kA, k=0,+1,%2, ...

In our case, k = 2 and oy, a are small in radiaus. Then

2 2
a’ - op
Zk-d( > )
2 2
- d
Thus K—%=O-6lum

In n
for @ =180’ % = 130> ¢
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5.124 The general formula for diffraction from N slits is
. 2 « 2
[=1, sin“a sin” N f

o’ sinzﬁ
nasin O
where o = —
A
- n(a+b)sinb
B A
and N = 3 in the cases here.
(a) In this case a+b = 2a
sin® a
s0 B =20 and I = Jyj—s— (3-4sin’20a)’
o

On plotting we get a curve that qualitatively looks like the one below

4

\ I/Io

9

o —
(b) In this case a+ b = 3a
so B=3a

. 2
sin a

and I =Ij~=~(2-4sin’3a)
a

This has 3 minima between the principal maxima

5.125 From the formula dsin® = mA
we have dsind5° = 2\, = 2x065um

or d= Zﬁx0-65um
Then for A, = 0-50 in the third order
2V2 x0655in 0 = 3 x0-50
15

——— = 0-81602
13xv7

sin@ =

This gives 6 = 54-68° = 55°
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5.128
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The diffraction formula is
dsin 90 = ny A
where 8; = 35° is the angle of diffraction corresponding to order ny (which is not yet known).
ny k
Thus d= 5in 6, = nyx09327pum

onusing A =0535pum
For the n™ order we get
sin@ = —sin 6, = — (0-573576 )
ny no
If ny = 1, then n> ng is at least 2 and sin0® > 1 so n = 1 is the highest order of diffraction.
If ng = 2 then n = 3,4,but sin 6 > 1 for n = 4 thus the highest order of diffraction is 3.

If ny =3,
then n=4526.
Forn = 6,sin0 = 2 x0-57 > 1, so not allowed while for

n=35,sin0 = §x0-573576<1

is allowed. Thus in this case the highest order of diffraction is five as given. Hence

ng =3
and d=3x%x09327 = 27981 ~ 2-8um.
Given that
dsin@; = A
dsin®, = dsin(0,+A0) =2A
Thus sin 8;°cos A O + cos 0; sin AB = 2sin 0,
or sinB; (2-cosAB) = cosB;sinA O
1 2-cosAB
. sin A @
or sin 0, =
VsinA0+(2-cosA0)?
- sinA @
V5-4cosAB
Finally » = —45indl
VS-4cosAO

Substitution gives A =~ 0-534pum

(a) Here the simple formula
dsin © = my A\ holds.

m x 0-530

Thus 1-5sin® = mx0-530 sin0 = 15
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Highest permissible m is m = 2 because sin 6 > 1 if m = 3. Thus

sin@ = i—g% for m = 2, This gives 0 = 45° nearby.

(b) Here d(sinBy-sin@) = nA
Thus sin 8 = sin Bo—n—;'-

0-53
15
= 0-86602 - n x 0-353333 .

= sin 60° - n x

Forn = 5, sin0 = - 0-900645
for n=6,sinB<-1.
Thus the highest order is n = 5 and we get
0 = sin”!(-0900645) = - 64°

5.129 For the lens

1,
f

n-1

1 1 R
(n-l)(k---;) or f =
For the grating

dsin®; = A or sinB; = A

d
d \/ d
cosecel-x,cotﬁln (X) -1
tan 91 = __1—_
Vi,
A
Hence the distance between the two symmetrically placed first order maxima
=2ftan6;, = ZR
/ 2
(n-1) .‘Z -1
A

On putting R =20, n=15,d =60pum
A=060pum we get 804 cm.
5.130 The diffraction formula is easily obtained on taking account of the fact that the optical path
in the glass wedge acquires a factor n (refractive index). We get
d(nsin® -sin(©0,)) = kA
Since 7n>0, ©- 6,>© and so 6, must be negative. We get, using © = 30°

3.1 . o . o
%5 = sin (30° - 6y ) = sin 48:6
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Thus 0y = -18-6°
Also for k = 1
3 sin(30° A_OS 1
a sin (30°-0,,) d=20" 2
Thus 9*1 = 0°
We calculate 6, for various k by the above formula. For £ = 6. ——3=—o —_—

sin (8, = 30°) = %=> 8, = 786°

Fork = 7
sin(0,-30°) = + 1= 6 = 120°
This is in admissible. Thus the highest order that can be observed is
k=6
corresponding to 6, = 78-6°
(for k = 7 the diffracted ray will be grazing the wedge).

The intensity of the central Fraunhofer maximum will be zero if the waves from successive
grooves (not in the same plane) differ in phase by an odd multiple of . Then since the phase
difference is

8= 2 (n-1)h
for the central ray we have

2x, ' 1
2 (n-1)h = (k—2)2n, k=1,23,...
A 1
or h-n-l(k_Z)'

The path difference between the rays 1 & 2 is
approximately (negleciing terms of order 0’ )

asinb+a-na a
= asin@-(n-1)a k 9
Thus for a maximum o

asine—(k’+-;-))» =-mA

orasin9=(m+k’+1)), 1

2
K =012, ...
m=0x1,+2 ...
The first maximum after the central minimum is obtained when m+ k' = 0

Wé ‘get' asin0; = %k
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5.132 When standing ultra sonic waves are sustained in the tank it behaves like a grating whose

5.133

5.134

grating element is

d= -:"— = wavelength of the ultrasonic

v- = velocity of ultrasonic. Thus for maxima
v .
L sin Op = mA

On the other hand
ftan0, = mAx

Assuming 6, to be small (because A<< %j

funb, ftnb,  Avf

we get Ax =
m —v-—sine M
vA m
or v =M
Ax

Putting the values A = 0-55um, v = 47MHz

f =035m and Ax = 0-60 x 10 > m we easily get
v = 1-51 km/sec.

Each star produces its own diffraction pattern in the focal
plane of the objective and these patterns are separated by
angle . As the distance d decreases the angle 0 between
the -neighbouring maxima in either diffraction pattern
increases (sin 8 = A/d ). When 8 becomes equal to 2 v the
first deterioration of visibility occurs because the maxima
of one system of fringes coincide with the minima of the
other  system. Thus from the condition
0 =24y and cin O = 'Z—we get

1 A .
Y = 29 ~ 2d(radmns)
Putting the values we get ¢} = 0-06"

(a) For normal incidence, the maxima are given by

I

dsin® = nA
so sin6=n?1=nx0.530
d 1-500
Clearly n<2a sinf>1 forn = 3.

Thus the highest order is n = 2. Then

(e

(Y]

[

f
J

[}
1

[

\

v
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p-d9 _ _k __k___1
dh dcos® d 2
V,_ (&
d
Putting k = 2, A = 00533 pum, d = 1-5pum = 1500nm
2 1 180 .
we get D = 1500 - x = x 60 = 647 ang. min/nm .
V 1- 1-06
1-5

(b) We write the diffraction formula as
d(sinBy+sin0) = kA

so sin Oy + sin 6 -k%
Here 0y = 45° and sin 6, = 0-707
) sin By +sin @ < 1-707 . Since
A 053
i=-15 - 0-353333, we sce that
k=<4

Thus highest order corresponds to k = 4.
do
Now as before D = ax °

k k/d

dcos 0 5
| 2
-\/1—(7-sm00)

= 12-948 ang. min/nm,

D =

5.135 We have dsin0® = kA
de D= k - tan 0
S0 dn dcos® = A

5.136 For the second order principal maximum
dsinB, = 2\ = kA

Nn

or Tdsin% =2Nn
minima adjacent to this maximum occur at
l-y)‘ldsin(ez:tAB) =(2N=z1)=x

A
or dcoseer-I—V-
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Finally angular width of the 2*® principal maximum is
23 2) tan 6,

Ndcos 6, Nav1_(klvay N

On putting the values we get 11-019" of arc

2A0 =

5.137 Using
A Ndsin 6
R=gn=kN="
- Isin 0 < 1
A A
5.138 For the just resolved waves the frequency difference
by - SO _ ¢ ¢
VTN TART AN
[ 1

" Ndsin® - 8t
since N d sin 0 is the path difference between waves emitted by the extremities of the grating.

5.139 & A = -050 nm

A 600
R - 3% ™ 05 - 12000 (nearly)
= kN
On the other hand
dsin0 = kA
l
LAY - A
Thus N sin 0
where [ = 10~ 2 metre is the width of the grating
Hence sin @ = 12000 x %
= 12000 x 600 x 10”7 = 0-72
or 0 = 46°.

5.140 (a) We see that
N = 6-5x10x200 = 13000

Now to resolve lines with d A = 0:015 nm and A ~ 670-8 nm we must have
- 670-8 -
0-015

Since 3N <R <4 N one must go to the fourth order to resolve the said components.

R 44720

1
(b) we have d = 200 mm = Spm

kA _ kx 0670
d 5

so sin@ =
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since [sin0|<1 we must have ks 7-46

d
so Kpax =7 = X
Thus Rm=kmuN=91000~%4=%
where I = 6-5 cm is the grating width.
, A 670 A
Finally LI W R - 91000 007 nm = 7pm = K
5.141 Here
A 589-3
R=3x="06 =N =5N
5893 1072
50 N="3"=73
3x1072
d= Sg93 ™ = 0509 mm
(b) To resolve a doublet with A = 460-0 nm and O A = 0-13 nm in the third order we must
have
R 460
N=3=50n 17

This means that the grating is
Nd = 1179 x 0-0509 = 60-03 mm
wide = 6 cm wide.

5.142 (a) From dsin® = kA

we get 60 = :—c?":‘—e
On the other hand x = fsinB
S0 Gx-fcosBGB-%f-é)»
For f=080m, 8\ = 0-03 nm! and
1
d= 250 mm
6um ifk=1
we get 8x {12um if k =2
(b) Here N = 25 x 250 = 6250
A 310-169
and 5% = 003 - 10339-->N

and so to resolve we need k = 2 For k = 1 gives an R.P. of only 6250.
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5.143

Suppose the incident light consists of two wavelengths A and A + & A which are just resolved
by the prism. Then by Rayleigh’s criterion, the maximum of the line of wavelength A must
coincide with the first minimum of the line of wavelength A +  A. Le* us write both conditions
in terms of the optical path differences for the extreme rays :
For the light of wavelength A
bn-(DC+CE) =0

For the light of wavelength A + 0 A

b(n+dn)-(DC+CE) = A+dA
because the path difference between extreme rays equals A for the first minimum in a single
slit diffraction (from the formula asin® = A).

Hence bon m A
A dn dn
and R=sx-%lsx| = %|an

5144 (a) 37_R=b = 2Bb/)\}

dk

For b=5cm,B=001pm?> A, =0434pum =5x10"um
Ry = 1223 x 10*

for A, = 0656 pm

Ry = 03542 x 10*

(b) To resolve the D-lines we require

R =22 _ o9
6
Thus = altel
(05893 )
3
b= 2B2x(OS8B) o 1.005x10* um = 1005 cm
002
é_

5145 b = kN = 2x 10,000

>’

be-lOp.m'1 = 2x10*
b= 2x105|,tm =02m = 20cm.
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5.146 Resolving power of the objective
__D _ 5x107°
122h  122x055x10°°
Let (A Y )y, be the minimum distance between two points at a distance of 3-0 km which the
telescope can resolve. Then
(AY)oa _ 1227 1
3x10° D 745x10*

3
or (A ) = =220 = 004026 m = 403 cm .

7-45 x 10

= 7-45 x 10*

5.147 The limit of resolution of a reflecting telescope is determined by diffraction from the mirror
and obeys a formula similar to that from a refracting telescope. The limit of resolution is
1 122 (Ay)u
R D ~ 1
where L = distance between the earth and the moon = 384000 km

Then putting the values A = 0-5S5um, D = Sm
we get (AY)pp = 51-6 metre

5.148 By definition, the magnification
I = angle subtended by the image at the eye _ '
angle subtended by the object at the eye ¢

At the limit of resolution P = .1__'2; A
where D = diameter of the objective
1220

On the other hand to be visible to the eye ¢’ 2

dy

where dy = diameter of the pupil

Thus to avail of the resolution offered by the telescope we must have

_122h/ 1220 _ D

I==2 D "4
D S50mm
Hence Tom = d = amm - 125
5.149 ¢
A B'
90-L
/
B A
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5.150

Let A and B be two points in the field of a microscope which is represented by the lens C
D. Let A’, B’ be their image points which are at equal distances from the axis of the lens

CD. Then all paths from A to A’ are equal and the extreme difference of paths from
A to B'is equal to

ADB -ACPB
=AD+DB -(AC+CB')
=AD+DB -BD-DPB
+BC+CB -AC-CPB
(as BD+DB' = BC+CBHB')
=AD-BD+BC-AC
=2ABcos(90°-a) = 2ABsina
From the theory of diffraction by circular apertures this distance must be equal to
1222
when B’ coincides with the minimum of the diffraction due to A and A’ with the minimum
of the diffraction due to B. Thus
1-22 A . A

= 0-61

2sin o sin
Here 2 a is the angle subtended by the objective of the microscope at the object.
Substituting the values

AB =

_ 061 x 055

AB 024

pm = 1-40pm.
Suppose d,,,, = minimum separation resolved by the microscope

Yy = angle subtended at the eye by this object when the object is at the least distance of
distinct vision Iy (= 25 cm).

. . . 122A
V' = minimum angular separation resolved by the eye = ZdZ
0
Yrom the previous problem
061 A
dmm = s
sin a
dmln _ 0'61 )\.
and V=" T lsina

Now
o . angle subtended at the eye by the image
T' = magnifying power = angle subtended at the eye by the object

when the object is at the least distance of distinct vision

zﬂ’—’-z l—o sin o
Y dy

b .. 25
Thus I‘mm"‘-’.(d—(:))smm-2><-(—)zx0~24-=30
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5.151 Path difference

5.152

=BC-AD

= a(cos 60°-cos o)

For diffraction maxima
a(cos60°-cosa) = kA,

&

>
Q o
o

. 2
since A = —a, we get

5
1 2
cosotsz—sk
1 2 o
and we get k= -1, cosa=-2—+§=0-9,a=26
k=0, cosa=-;—=0~5,a=60°
- 1.2 - 84°
k-l,cosa-2 5—01,0t 84
1 4 o
k-2,wsa=2—5=—0l3,a=1075
k=3 cosa=}-—§-—0-7 a = 134-4°
b 2 5 ’

Other values of k are not allowed as they lead to |cos a|>1.

We give here a simple derivation of the condition for diffraction maxima, known as Laue
equations. It is easy to see form the above figure that the path difference between waves
scattered by nearby scattering centres P; and P, is

— —>

P2A—'PIB = r_ra;—r's

-, —> — >

=r (5-5)=r-S. 5)0

— —>
Here r~ is the radius vector P; P, . For A ->
maxima this path difference must be an P é
integer multiple of A for any two -
neighbouring atoms. In the present case of
two dJunensional lattice with X - rays
incident normally 7 s = 0. Taking
successively - nearest neighbours in the -

7>

x - & y - directions
We get the equations
acosa = hA
beosP = kA
Here cos a and cos §§ are the direction cosines of the ray with respect to the x & y axes of
the two dimensional crystal.

coso = ——BX sin(tan*%’l—‘) - 028735
V(Ax) +41?
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5.153

5.154

S0 using h =k =2 we get
40 x 2
a= 28735 Pm = 0278 nm
Similarly cosp = —BY sin(tan'l%'lz) - 0-19612
V(ay)y+41?
80
b= cosﬁpm = (0-408 nm

Suppose o, 8, and y are the angles between the direction to the diffraction maximum and
the directions of the array along the periods a, b, and c respectively ( call them x, y, & z
axes). Then the value of these angles can be found from the following familiar conditions
a(l-cosa) = kA
bcosP = kA and ccosy = ks A
where k;, k,, k3 are whole numbers (+, -, or0)
(These formulas are, in effect, Laue equations, see any text book on modern physics). Squaring

and adding we get on using cos? a + cos? B+ cos? y=1

A P kY 2k A
2—2cosa- [(—1) +(‘Ez-) +(__3.) ])"2 - 1
a b c -
N = 2k1/a
[(kl/a)2+(k2/a)2+(k3/a)2]'

Knowing a, b, ¢ and the integer k, , k,, k3 we can find o, ,y as well as A.

Thus

The unit cell of NaCl is shown below. In an
infinite crystal, there are four N a* and four
Cl™ ions per unit cell. (Each ion on the
middle of the edge is shared by four unit
cells; each ion on the face centre by two unit
cells, the ion in the middle of the cell by
one cell only and finally each ion on the
corner by eight unit cells.) Thus

M .3
4NA p-a

where M = molecular weight of NaCl in
gms = 58-5 gms
N, = Avogadro number = 6-023 x 102

1 .‘/ M
24 = A _28mA
Thus 2a IN, p 2:82

The natural facet of the crystal is one of the faces of the unit cell. The interplanar distance

d= %—a - 282A
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Thus 2dsina = 2 A
So A =dsino = 2-822;\x‘/-—2§- = 244 pm.

5.155 When the crystal is rotated, the incident monochromatic beam is diffracted from a given
crystal plane of interplanar spacing d whenever in the course-of rotation the value of 0 satisfies
the Bragg equation.

We have the equations 2dsin0; = k; A and 2dsin6, = k, A
But n-20; =x-26,+a or 20, =20,-a
a

so 62=61+_i'

o

Thus Zd{sin 6, cos 2

+cos915in%} = kA

. o o Ko=
Hence 2dsm5cos 0, = (ka—klcos-z—))\. 7\—,262 ?
also 2dsin%sin 0, =k )\.sin%

12
Squaring and adding 2dsin% = (k12+lrQ2—2kllozcos%) A
V2

Hence d=_2 [k12+k,22—2k1kzcos%]
2 sin —
2
Substituting a=60°,k =2,k =3,A=174pm
we get d=281pm=2-81A

(and not 0-281 p m as given in the book.)
(Lattice parameters are typically in A’s and not in fractions of a pm.)

5.156 In a polycrystalline specimen, microcrystals are oriented at various angles with respect to one
another. The microcrystals which are oriented at certain special angles with respect to the
incident beam produce diffraction maxima that appear as rings.

The radial of these rings are given by

r=1tan2a

oL l

where the Bragg’s law gives

2dsina = kA r
Inourcase k=2,d =15pm, A =17-8pm
~1178

SO o = sin = 66° and r = 352 cm.

155
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5.4 POLARIZATION OF LIGHT

5.157 Natural light can be considered to be an incoherent mixture

(in the illuminated region) characteristic of a straight edge

of two plane polarized light of intensity I/ 2 with
mutually perpendicular planes of vibration. The screen >
consisting of the two polaroid half-planes acts as an opaque
half-screen for one or th¢ other of these light waves. The
resulting diffraction pattern has the alterations in intensity

on both sides of the boundary.

bou ndarg

At the boundary the intensity due to either component is

(H/2)
4

I
and the total intensity is — . (Recall that when light of intensity /; is incident on a straight

edge, the illuminance in front of the edge is Iy / 4).

5.158 '(a)

®)

Assume first that there is no polaroid and the
amplitude due to the entire hole which extends over
the first Fresnel zone is A

Af

_4_ »

When the polaroid is introduced as shown above, each
half transmits only the corresponding polarized light.
If the full hole were covered by one polaroid the

Then, we know, as usual, [, =

amplitude transmitted will be (A; / V2).

Therefore the amplitude transmitted in the present case will be through either half.

Ay
2V
Since these transmitted waves are polarized in mutually perpendicular planes, the total

intensity will be
2

2
A, Ay A1 I
+ -_= 0-
2V2 ) \2v2 ) 4

We interpret the problem to mean that the two polaroid pieces are separated along the
circumference of the circle limiting the first half of the Fresnel zone. (This however is
inconsistent with the polaroids being identical in shape; however no other interpretation
makes sense.)

From (5.103) and the previous problems we see that the amplitudes of the waves trans-
mitted through the two parts is
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5.160

5.161
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Ay (1-i)
-1
2\/— 2V,
and the intensity is
2 2
1+ -
2\/_.( ) 2\/_ i)
Af
-5 =2l

When the polarizer rotates with angular velocity o its instantaneous principal direction makes
angle w¢ from a reference direction which we choose to be along the direction of vibration

of the plane polarized incident light The transmitted flux at this instant is
d, cos’wt

and the total energy passing through the polarizer per revolution is
T

ffbocoszwtdt, T=2%/0
=®, Z =06mJ.
w

Let I, = intensity of the incident beam.
Then the intensity of the beam transmitted through the first Nicol prism is

L =11, |
A N
and through the 2™ prism is (

I = (%Io)cosztp p

Through the N prism it will be

IN - IN—l COSZ(P

_1 2(N-1) JJ
210005 Q \J\J .

Hence fraction transmitted

I
X el @ Vg 012 for N -6.
I 2

and p= 30°

When natural light is incident on the first polaroid, the fraction transmitted will be %t (only

the component polarized parallel to the principal direction of the polaroid will go).
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5.162

5.163

The emergent light will be plane polarized and on passing through the second polaroid will
be polarized in a different direction (corresponding to the principal direction of the 2
polaroid) and the intensity will have decreased further by < cos? P.

In the third polaroid the direction of polarization will again have to change by ¢ thus only a
fraction T cos’ ¢ will go through.

Finally I=Ix %é cos*
Thus the intensity will have decreased
I
70 = % = 60-2 times
T cos @
for T =081, o =60°.

Suppose the partially polarized light consists of natural light of intensity /; and plane polarized
light of intensity I, with direction of vibration parallel to, say, x - axis.
Then when a polaroid is used to transmit it, the light transmitted will have a maximum
intensity
1
2
when the principal direction of the polaroid is parallel to x — axis, and will have a minimum

11 +12 ,

intensity 511 when the principal direction is L” to x - axis.

Ixmx"Imin 12
Thus P = Imax+1min - Il +12

L_ P _025 1

L 1-P" 075" 3"

SO

If, as above,
I, = intensity of natural component

I, = intensity of plane polarized component

then Ty = -;—11 +1
I
and I= “;:“ -%11+]20082(p
S0 Iz-Iw(l-;ll-)cosecz(p
1 2 2Imax 1 2
I =21 1-[1-—1cosec = — - Cos
=2t 11 oo | - Gg oo
1
1__
I -
Then P 2 ! = n-1

I +1, 2 l—cosz(p +1__1_ l1-mcos2¢@
n n
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On putting n =30, ¢ = 60°
we get P-———2—1=§-0-8
1+3x-2—

Let us represent the natural light as a sum of two mutually perpendicular components, both
with intensity [y . Suppose that each polarizer transmits a fraction o; of the light with
oscillation plane parallel to the prinicipal direction of the polarizer and a fraction o, with
oscillation plane perpendicular to the principal direction of the polaizer. Then the intensity of
light transmitted through the two polarizers is equal to
Iy = af I+ o3 I

when their principal direction are parallel and

I, = oo lj+omo ly = 20,041
when they are crossed. But

oy - o /-
S0 L2 ni

(a) Now the degree of polarization produced by either polarizer when used singly is

Imax_lmin - ) - ay
y Y ay + 0y

Po =
(assuming, of course, o; > o, )

vVl _+/9% _o
Thus P, e \[11 0-905

(b) When both polarizer are used with their principal directions parallel, the transmitted light,
when analysed, has

maximum intensity, I, = alz Iy and minimum intensity, I, = oy I

2 2 2
a; -0y a;-0y (0;+0y)
50 P=——-s-= : )

aj +o0y Ot a12+a2

- 7]-1.(1_'_20‘10‘2]

012-0-022

2 n
-y -1 (1+-1-)-———-—"'nl-v 1-—15_ = 0.995.
n

n
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5.165 If the principal direction N of the Nicol is along A or B,
the intensity of light transmitted is the same whether the
light incident is one with oscillation plane N, or one with
N,. If N makes an angle 8 ¢ with A as shown then the

fractional difference in intensity transmitted (when the
light incident is N; or N, ) is

0052(90°-g——bq))—cosz(90°+-(22-6q))

(7). o) AL N

2

.2( @ _ar2( @
sm(2+6(p) sin (2 Gq))

. 2@

sin” S i ..
ZSiHSR‘2COS$6Q) i N.
2 2 P i 2

= ? = 4cot26(p I

s 2
sin |
7 !

If N makes an angle & ¢ ( << @ ) with B then
2cos 2 25in /28 ¢

AT\ _ cos’(9/2-8)-cos’(¢/2+89) _ 2 = 4tang/209
I, cos’ /2 cos” /2
Al AT
e
or -Ztan'l"‘l"
P \/_TT

This gives ¢ = 11-4° for n = 100.

5.166 Fresnel equations read
Iy sin? (6, - 0,) tan’ (0, - 6,)
Y sin?(0,+6,) tan® (0, +0,)
At the boundary between vacuum and a dielectric 6; = 0, since by Snell’s law
) sin 0; = nsin 6,
Thus [; /I, cannot be zero. However, if 6; + 6, = 90°, I')| = 0 and the reflected light is

polarized in this case. The condition for this is
sin@; = nsin0,, = nsin(90°-0;)

and 1y = I

or tan0; = n 0; is called Brewsta’s angle.

The angle between reflected light and refracted light is 90° in this case.
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5.167 (a) From Fresnel’s equations

, sin” (6, - 6,)
ry=1, sin?(0,+0,) |3t Brewste’s angle
Iy =0

Iy =1,sin*(0,-6,)

- %I(Sm 8, cos 0, - cos 6, sin 0, )2

Now tan0; = n, sin 0, = R
Vr’sl
1 .
cos 0) = ————, sinO, = cos 6;

Vsl

cos 9, = sin 0;
| 2
n -
= —I
2 (n +1 )
r,
Thus reflection coefficient = p = T
2

2
(”2'1) = 0-074
n+1

N =

on putting n = 1-5

(b) For the refracted light
2

2
r,o=1,-I, = %1{1-(:2:) }

_l, an’
2" (n*+1)?
1
Iy =3

at the Brewster’s angle.
Thus the degree of polarization of the refracted light is
P=I”H—I”J_ (n*+1)2-
I'i+I'y (" +1)° +4n
(n’-1) p
T 2(m 1Y —(nP-1P 1-p
On putting p = 0-074 we get P = 0-080 .
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5.168

5.169

5.170

The energy transmitted is, by conservation
of energy, the difference between incident
energy and the reflected energy. However
the intensity is affected by the change of the
cross section of the beam by refraction. Let

Io

A;, A, A, be the cross sections of the
incident, reflected and transmitted beams.

Then
Ay = A,
A=At
cos i
But at Brewster’s angle r = 90 -
S0 A, = A;tani = nA;
1-p)]
Thus I = (1-p)h

n

. 2

sin” @

The amplitude of the incident component whose oseillation vector is perpendicular to the
plane of incidence is
A, = Apsing
and similarly A = Agcos @
)
: sin“(0,-9
Then r = Io-——i-(—l—z—)—s' 2
sin“(0; + 0,)
2
I sin 0 cos 0, — cos 0, sin 0,
= "%} sin 0, cos 0, + cos 0, sin 0,
2
2
n“-1 . 2
= I sin
0 [ n’+1 } @
2
Hence p—I’—J'— " -1 sin®
Iy n+1

Putting n = 1-33 for water we get p = 0-0386

Since natural light is incident at the Brewster’s angle, the
reflected light 1 is completely polarized and P; = 1
Similarly the ray 2 is incident on glass air surface at

Brewster’s angle tan~! %) sc 3 is also completely
polarized. Thus P; = 1
Now as in 5.167 (b)

P, = 1_%5 = 0087 if p = 0-080
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1}\ /g@f/;[o
1310
15(1-20)15 P(-29)1,

//",;gll'o
= = ZP(I'P) = 0173
%+%(1_2p)2 1-2p(1-p)

Finally as shown in the figure
11 2
) (1-2p)

P,

5171 (a) In this case from Fresnel’s equations
sin? (0, - 6,)

r, =1
P M sin? (0,4 0,)
we get I = ("2_ ) Iy = pl, say
n“+1
then L=(1-p)y, 3 =p(1-p)]

( p is invariant under the substitution n —’% )
16 n*
——— I, = 0726 1,.
( n”+1 )4 0 0
(b) Suppose p’ = coefficient of reflection for the component of light whose electric vector

oscillates at right angles to the incidence plane.
2

finally L= (1-pVh =

n’-1
From Fresnel’s equations Pl =]
n“+1

Then in the transmitted beam we have a partially polarized beam which is a superposition
of two (|| & L) components with intensities
1 1 2
710&510( 1-p")
1-(1-p') (n*+1)*-16n* 1-0726

= ~0’158
1+(1-p'Y (RP+1)+16n* 140726

Thus
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5172 (a)

(®)

5173 (a)

®)

When natural light is incident on a glass plate at Brewster’s angle, the transmitted light
has

16
I' = I,/2 and I =
” 0/ L (n2+1)4

where I is the incident intensity (see 5.171 a)

Iy2 = a*1y2

After passing through the 2™ plate we find
111 1 " 442 1
I” = -2—10 and Il = ((1. ) '2‘10

Thus after N plates IT™ = =1,

1
2
s = of¥ :lz—Io

1-o*V 2n
ToodW Where o = 70

Hence P =

2

at = 0726 for n = %
Thus P(N =1)= 0158 P(N = 2) = 0310
P(N =5) = 0663, P(N = 10) = 0:922.

1
2
|| has its electric vector oscillating parallel to the plane of incidence and L has the same
17 to it.

By Fresnel’s equations for normal incidence

r, _ sin’(0;-0,) . 0,-6, ’ n-1V
_— = hm T_— = llm = = p
I, o0 sin°(0;,+60,) o—0(06:1+6; n+l

I 1 2
similarly —I# =p = (:ﬁ)

We decompose the natural light into two components with intensity Jj; = 5Ip = I, where

Thus %—-=p=(£) =i=0'04

The reflected light at the first surface has the intensity

I = ply
Then the transmitted light has the intensity 7 L
3
L= (1-p)l ’ 4

At the second surface where light emerges from glass Ip \17 -

into air, the reflection coefficient is again p because

i - 1
p is invariant under the substitution n — o

Thus L=p(1-p)lyand I,=(1 -p)°1,
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For N lenses the loss in luminous flux is then

A e 1-(1-p)™ = 0335 for N = 5
Suppose the incident light can be decomposed into waves
with intensity Jj; & I, with’ oscillations of the electric
vectors parallel and perpendicular to the plane of

incidence. I '1_[
For normal incidence we have from Fresnel equations Y e
0. -8 2 1 2 7
. 1-9%) __ n- — == —-=
L I"‘(91+92) 2 :_—_—_:EI2 —-==

il
0l

where we have used sin 6 ~ 0 for small ©.

|

, 2 ::_: :—:‘: ;,1_'_11:3:_
Similarl I =1 n-1 - —— | =
imiarly I I n +1 7777/777777/;7777777/1
Then the refracted wave will be
4n 4n
I", =1 and I, =1
=gy O Lo

At the interface with glass
n-n 2
[T ST Al s ond "
1" =1 (n'+n) , similarly for Jj

we see that
Loon -
L .= if # =Vn,similary for || component.
I, ) Iy
This shows that the light reflected as a fraction of the incident light is the same on the two
surfaces if n’ = Vn .
Note:- The statement of the problem given in the book is incorrect. Actual amplitudes are not

equal; only the reflectance is equal.

Here 6, = 45°

= 04714

|3

indy = Lxl . 2

V2 3V2
0, = sin~ 04714 = 281°
sin? (0, - 6,)

Hence I' =
+ lsin2(91+62)

Ipx 00923

2
_1,(sin169°) _ 1
279\ sin731° 2
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5.176

5177

2

, 1. (tan16-9 1

I” 210(_—tan73~1) 210)(0’0085
Thus
(a) Degree of polarization P of the reflected light
0-0838

= 01008 = 081

(b) By conservation of energy

1 - %on 0-9077

w1
I = > Iox 09915

Thus 0-0838

= 1gogy ~ 0044

The wave surface of a uniaxial crystal consists of two sheets of which one is a sphere while
the other is an ellipsoid of revolution.

The optic axis is the line joining the points of contact.

To makes the appropriate Huyghen’s construction we must draw the relevant section of the
wave surface inside the crystal and determine the directions of the ordinary and extraordinary
rays. The result is as shown in Fig. 42 (a, b & c) of the answers

In a uniaxial crystal, an unpolarized beam of light (or even
a polarized one) splits up into O (for ordinary) and E (for

extraordinary) light waves. The direction of vibration in a

the O and E waves are most easily specified in terms of /] Kl’ 0
the O and E principal pﬁncs. The principal plane of the ee s
ordinary wave is defined as the plane containing the O ray ]

and the optic axis. Similarly the principal plane of the E . Sy
wave is the plane containing the E ray and the optic axis. 9 J,._:'_’_‘_,'_‘,‘,‘" !

In terms of these planes the following is true : The O Ji:_u_--_-:_-_;:-‘\
vibrations are perpendicular to the principal plane of the it 3
O ray while the E vibrations are in the principal plane of

the E ray.

When we apply this definition to the wollaston prism we

find the following : (exaggerated.) |
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When unpolarized light enters from the left the O and E waves travel in the same direction
but with different speeds. The O ray on the left has its vibrations normal to the plane of the
paper and it becomes E ray on crossing the diagonal boundary of the two prism similarly the
E ray on the left becomes O ray on the right. In this case Snell’s law is applicable only
approximately. The two rays are incident on the boundary at an angle 0 and in the right prism
the ray which we have called O ray on the right emerges at

sin'lie-sine = sin X =
ny 1-486 2

where we have used

n, = 1-1658 , ny = 1-486 and 6 = 30°.
Similarly the E ray on the right emerges within the prism at

sin™' 2% 5in @ = 26:62°
e
This means that the O ray is incident at the boundary between the prism and air at
33-91 - 30° = 391°

and will emerge into air with a deviation of

sin ™! ng sin 3-91°
= sin~!(1-658 sin 3-91°) = 6-49°
The E ray will emerge with an opposite deviation of
sin~1( n,sin ( 30° - 26-62°))
= sin~!(1-486sin 3-38°) = 5:03°
Hence O = 6:49° +503° = 11-52°
This result is accurate to first order in ( n, — ny ) because Snell’s law holds when n, = ny.

The wave is moving in the direction of z- axis
(@) Here E, = Ecos(wt-kz), E, = Esin(wt-kz)

2 2
E_",.,EL =1
E2 2

so the ..p of the electric vector moves along a circle. For the right handed coordinate
system this represents circular anticlockwise polarization when observed towards the in-
coming wave.

(b) E, = Ecos(wt-kz), E, = Ecos(wt-kz+%)

E,
so = cos(wt-kz)- — sin(wr-kz)
V2

E V2

2
o E, 1 E\ _1f, E
E E 2 E
E
E

(5

Nl

2
vz BE L

E?

Y
o]

|4

or +

2

[ 8]
n
[\S]
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This is clearly an ellipse. By comparing with the previous case (compare the phase of
E, in the two cases) we see this represents elliptical clockwise polarization when viewed
towards the incoming wave.
We write the equations as

E.+E, = 2Ecos((n)t—kz+-g-)cos-’8E

. ) . =®
E,—Ey=+2Esm(wt—kz+-8~)51n-8—
2 2
Thus E.+E, . E.-E, -1

.1 Ao R
250058 4Esm8

. n_.X . s s . . .
Since cos g>sing, the major axis is in the direction of the straight line y = x.

(c) E, =Ecos(wt-kz)

E,=Ecos(wt-kz+mn) = -Ecos(mwt-kz)
Thus the top of the electric vector traces the curve
E, = -E,
which is a straight line (y = —x). It corresponds to plane polarization.

5.179 For quartz

n, = 1553
ne = 1544 { for A =589nm.

In a quartz plate cut parallel to its optic axis, plane polarized light incident normally from
the left divides itself into O and E waves which move in the same direction with different
speeds and as a result acquire a phase difference. This phase difference is

2n
o= T("e‘"o)d

where d = thickness of the plate. In general this makes the emergent light elliptically
polarized.

(a) For emergent light to experience only rotation of polarization plane

d=(2k+1)m, k=0,1,23...

A

Forthis d = (2k+1)———
2k ) 3 )
-589 -589
= (2k+1)2x.009um =(2k+1) g mm

The maximum value of (2 k+ 1) for which this is 3 —_—
less than 0-50 is obtained from

0-50 x 18

0589 - 1B

Then we must take £k = 7and d = 15 x =289 = 0-4908 mm

18
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(b) For circular polarization 8 = g
modulo 2mie. b= (4k+1)F
A 0-589
s d=(4k+1 = —=
o (4k+ )4(n¢—n0) (4k+1) 36
0-50 x 36

Now 0589 - 30-56
The nearest integer less than this which is of the form 4k + 1 is 29 for k= 7. For this

d = 0-4749 mm

5.180 As in the previous problem the quartz plate introduces a phase difference d between the

5.181

O & E components. When 6 = n/2 (modulo 7 ) the resultant wave is circularly polarized.
In this case intensity is independent of the rotation of the rear prism. Now

2
o= —)\E(n,—no)d

= 2—}"20-009x0-5 x10 3 m

=2-£, Ain pm

A
For A = 050 um. & = 18 x. The relevant values of d have to be chosen in the form

(k+-;—)n. For k = 17,16, 15 we get

A= 05143 um, 0-5435 pm and 0-5806 pm
These are the values of A which lie between 0-50 um and 060 pm.

As in the previous two problems the quartz plate will introduce a phase difference d. The light on
passing through the plate will remain plane polarized only for d = 2kx or (2k+1)x In
the latter case the plane of polarization of the light incident on the plate will be rotated by
90° by it so light passing through the analyser (which was originally crossed) will be a
maximum. Thus dark bands will be observed only for those A for which

0 =2kn

Now a=%(ne-%)d;%xmx1osx10‘3m

- ZZ(nin pm)

For A =055 we get = 4909 n
Choosing d =48 n, 46 x, 44 x, 42 ¢ we get A =0-5625 um, A =0-5870 p m, A =0-6136 p m

and A =0-6429 pm . These are the only values between 0-55 pm and 0-66 u m. Thus there
are four bands.
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5.182

5.183

5.184

Here
5 = g{-‘-x 0009 x 0-25 m
= 4.in ,Ain pm.
We check that for A=4286nm & = 105«
A=5294nm & = 85n

A=6923nm d = 65=xn
These are the only values of A for which the plate acts as a quarter wave plate.

Between crossed Nicols, a quartz plate, whose optic axis makes 45° with the principal
directions of the Nicols, must introduce a phase difference of (2 k + 1) & so as to transmit the
incident light ( of that wavelength) with maximum intensity. For in this case the plane of
polarization of the light emerging from the polarizer will be rotated by 90° and will go through
the analyser undiminished. Thus we write for light of wavelengths 643 nm

2t x 0-009 -3
d = ———— X d (mm) x 10
0643 x 10~ (mm)

- 822 (2k1)n )
To nearly block light of wavelength 564 nm we require
54 oo o
We must have 2 k' >2 k+ 1. For the smallest value of d we take 2k’ = 2k +2.
Thus 0643 (2k+1) = 0564x(2k+2)
s0 0079 x 2k = 0564 x 2 - 0-643
or 2k = 6-139

This is not quite an integer but is close to one. This means that if we take 2 k = 6 equations
(1) can be satisfied exactly while equation (2) will hold approximately. Thus

7 x 0-643
d = 18 = 0-250 mm
If a ray traverses the wedge at a distance x below the joint, ®
then the distance that the ray moves in the wedge is A\
2xtan g)— and this cause a phase difference / \
0= 2Tn(ne-no)than%)-

between the £ and O wave components of the ray. For a
general x the resulting light is elliptically polarized and is
not completely quenched by the analyser polaroid. The
condition for complete quenching is

0 = 2 kn— dark fringe

‘———_-\
_—————7/
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That for maximum brightness is
O = (2k+1)n - bright fringe.
The fringe width is given by

Ax = A o
2(n,-ng)tan -
2
Hence (n,-ny) = S —
2 Axtan ©/2
using tan (©/2) = tan 175° = 0-03055,
A=05pum and Ax = 1mm, we get A2=T1,

n,-ny = 9001 x 103

Light emerging from the first polaroid is plane polarized
with amplitude A where N, is the principal direction of the
polaroid and a vibration of amplitude can be resolved into
two vibration : E wave with vibration along the optic axis
of amplitude A cos @ and the O wave with vibration
perpendicular to the optic axis and having an amplitude
A sin . These acquire a phase difference 0 on passing
through the plate. The second polaroid transmits the
components :
A cos ¢ cos ¢’

and A sin @ sin ¢’
What emerges from the second polaroid is a set of two plane polarized waves in the same
direction and same plane of polarization but phase difference 8. They interfere and produce
a wave of amplitude squared

R? = Az[coszqacosch'+sin2¢psin2q)' + 2 cos ¢ cos @' sin @ sin ¢’ cos O ],
using cos? (¢ — ¢') = (cos @ cos @' + sin @ sin ¢')
= cos’ @ cos’ @’ + sin’ @ sin’ ¢’ + 2 cos @ cos @’ sin @ sin ¢’
we easily find

R? = Az[cosz(tp—q)')—sin2tpsin2(p'sin2%]

Now A? = Ip/2 and R? = I so the result is

I= %Iojcosz(xp—(p’)—sin2cpsin2q>’sin2-g-

Special cases :- Crossed polaroids : Here @-¢'=90° or @' =¢-90° and
2¢'=2¢-180°
Thus in this case

=1, = —;—IosinZZ(psjnz%
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5.186

Parallel polaroids : Here ¢ = ¢’ and

I=1J = %Io(l—sin22cpsin2§-)

2
. 2n " . - .
With § = TA , the conditions for the maximum and minimum are easily found to be that
shown in the answer, N
Let the circularly polarized light be resolved into plane Wové
polarized components of amplitude A, with a phase 0

E wave

difference gbetween then.

On passing through the crystal the phase difference
n
2
in the direction N are respectively
Aqcos @ and A, sin @

becomes & + = and the components of the E and O wave

They interfere to produce the amplitude squared

R2-A02c082(p +A025in2cp+2A0200sq>sin(pcos (6+-32£)

= A¢(1+sin2¢@sind)
Hence I=1,(1+sin2¢@sind)
Here I, is the intensity of the light transmitted by the polaroid when there is no crystal plate.

5.187 (a) The light with right circular polarization (viewed against the oncoming light, this means

that the light vector is moving clock wise.) becomes plane polarized on passing through
a quarter-wave plate. In this case the direction of oscillations of the electric vector of the
electromagnetic wave forms an angle of + 45° with the axis of the crystal OO’ (see Fig
(a) below). In the case of left hand circular polarizations, this angle will be -45° (

Fig (b)).
0 0

Oy 0
PN

0 0'

(b) If for any position of the plate the rotation of the polaroid (located behind the plate) dor
not bring about any variation in the intensity of the transmitted light, the incident light



213

is unpolarized (i.e. natural). If the intensity of the transmitted light can drop to zero on
rotating the analyzer polaroid for some position of the quarter wave plate, the incident
light is circularly polarized. If it varies but does not drop to zero, it must be a mixture
of natural and circularly polarized light.

5.188 The light from P is plane polarized with its
electric vector vibrating at 45° with the plane of P ® ———-] F
E

the paper. At first the sample S is absent. Light
from P can be resolved into components vibrating
in and perpendicular to the plane of the paper. el
The former is the E ray in the left half of the l’*

[

:..
:...
.

|

|

A

Babinet compensator and the latter is the O ray.
In the right half the nomenclature is the opposite.
In the compensator the two components acquire
a pahse difference which depends on the relative
position of the ray. If the ray is incident at a
distance x above the central line through the
compensator then the E ray acquires a phase
2—;‘-(n5(l-x)+no(l+x))tan®

while the O ray acquires —>— l
2n x

T(no(l—x)+nE(l+x))tan®

so the phase difference between the two reays is

ol

2z
A

we get dark fringes when ever 8 = 2kmn

(ny,-ng)2xtan® = B

because then the emergent light is the same as that coming from the polarizer and is quenched
by the analyser. {If & = (2k+1)n , we get bright fringes because in this case, the plane
of polarizaton of the emergent hight has rotated by 90° and is therefore fully transmitted by
the analyser.}

If follows that the fringe width A x is given by

Ax = M
2|ny-ng|tan ©

(b) If the fringes are displaced upwards by 0 x, then the path difference introduced by the
sample between the O and the E' rays must be such as to be exactly cancelled by the
compensator. Thus

2T:n[d(n’o-n’E)+(nE—no)26Jctan(-3] =0

or d(n'og-ng) = -2(ng-ny)dx0
using tan Oa ©.
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5.190

Light polarized along the x-direction (i.e. one whose electric vector has only an x component)

and propagating along the z-direction can be decomposed into left and right circularly
polarized light in, accordance with the formula

1 , 1 .
E, = E(Ex-flEy)-fi(Ex—tEy)

On passing through a distance ! of an active medium these acquire the phases 8y = ZTnnRI
and 9, = gxﬂ-nll so we get for the complex amplitude

E' = .;_(Ex+iEy)e‘°"+/%—(Ex—iEy)e'a'-
R+
=e' "2 [%(Ex+iEy)e‘°/2+%(Ex—iEy)e"lW]
B hA/ 5 .
=e 2 [E,msE—Ey smi] , 0 =0 -9,

Apart from an over all phase ( 8y +9;)/2 (which is irrelevant) this represents a wave whose
plane of polarization has rotated by

d =
3 =3 (An)l, An = |ng-n]

By definition this equals o/ so

An = a_)»'
n
589:5x 10 ®mm x 21-72 deg/mm =x
B n X 180 (rad)
_ '58951;021'72 x 103
=071x10"*

Plane polarized light on entering the wedge decomposes
into right and left circularly polarized light which travel .l
with different speeds in P and the emergent light gets its e

plane of polarization rotated by an angle which depends 4\
on the distance travelled.

Given that A x = fringe width 4 \

A xtan 0 = difference in the path length traversed by two /7 \
rays which form successive bright or dark fringes. _—— ! !

Thus zTnlnR—n,|Axtan6=2n

Thus o = nin = n/Axtan 0

= 20-8 ang deg/m m
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Let x = distance on the polaroid Pol as measured from a maximum. Then a ray that falls at
this distance traverses an extra distance equal to
x+ xtan 0

and hence a rotation of +oaxtand = = z—;

By Malus’ law the intensity at this point will be cos? ( u_x)i
~ Ax

If I, = intensity of natural light then

1

2 Iy = intensity of light emerging from the polarizer nicol.

Suppose the quartz plate rotates this light by ¢, then the
analyser will transmit

%Iocos2(90—q;)
1. .2 ZPOZ
= 2I(,ann P N1
of this intensity. Hence nl = %Io sin’ @ 4
-4
or Q= sin™!V 2n 90 NZ(ATICZZ)
But ¢ =od so
dpin = isin'l\/ 2n

For minimum d we must take the principal value of inverse sine. Thus using
a =17 ang deg/m m.
dpin = 299mm.

For light of wavelength 436 nm

41-5°xd = kx180° = 2kx90°
(Light will be completely cut off when the quartz plate rotates the plane of polarization by
a multiple of 180°.) Here d = thickness of quartz plate in mm.

For natural incident light, half the light will be transmitted ‘when the quartz rotates light by
an odd multiple of 90°. Thus

31-1°xd = (2K +1)x90°

415 4

Now _ 31 - 13344 = 3
Thus k=2and ¥ =1 and
d=22 _s6rmm.

415
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5.193 Two ecffects are involved here : rotation of plane of
polarizatin by sugar solution and the effect of that rotation
on the scattering of light in the transverse direction. The
latter is shown in the figure given below. It is easy to see
from the figure that there will be no scattering of light in
this transverse direction if the incident light has its electric
vector parallel to the line of sight. In such a situation, we

cxpect fringes to occur in the given experiment.
From the given data we see that in a distance of 50 cm,
the rotation of plane of polarization must be 180°. Thus
the specific rotation constant of sugar

_ Totation constant

oK

concentration
- 180/50 ang/deg/cm = 180
SOOSI- 5-0d m x ( -500 gm/cc )

72° ang deg/(dm ‘gm/cc) (1dm = 10cm)

5.194 (a) in passing through the Kerr cell the two perpendicular components of the electric field
will acquire a phase difference. When this phase difference equals 90° the emergent light
will be circularly polarized because the two perpendicular components O & E have the
same magnitude since it is given that the direction of electric field E in the capacitor
forms an angle of 45° with the principal directions of then icols. In this case the intensity
of light that emerges from this system will be independent of the rotation of the analyser

prism.
Now the phase difference introduced is given by
2n
d = T ( n.—ny ) 1

In the present case & = -J-zt- (for minimum electric field)

A
n.—ny = ;‘7

Now n.-ny = BAE?

1 s
$0 Ei -\/ 757 - 10 /\/88 = 1066 kV/cm .

(b) If the applied electric field is
E =FE_ snot,o =2xv

than the Kerr cell introduces a time varying phase difference
d =2nB| Elsinot

2rx22x107 10 10 x (50 x 10° ) sin*wt
11 nsinw 1
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S EL4 1
In one half-cycle (1.e. in time — = 7/2 = —)
w 2v
this reaches the value 2 k @ when
2 2 4 6 8 10
=0 n
2 4 6 8 10
117117117 117 11
i.e. 11 times. On each of these occasions light will be interrupted. Thus light will be interrupted
2vx11 = 22x108 times per second

(Light will be interrupted when the Kerr cell (placed between crossed Nicols) introduces a
phase difference of 2 k x and in no other case.)

sin

5.195 From problem 189, we know that

where a is the rotation constant. Thus

On the other hand Omeg = VH

2cVH

Thus for the magnetic rotations An p

5.196 Part of the rotations is due to Faraday effect and part of it is ordinary optical rotation. The
latter does not change sign when magnetic field is reversed. Thus

¢ =0al+VIH
¢, =al-VIH
Hence 2VIH = (¢, -9;)
or V-(@)/IH

Putting the values

V= ;E)—-‘:‘f%x 10'3perA = 0-015 ang min/A

5.197 We write
P = Pchemical + Pmagnenc
We look against the transmitted beam and count the positive direction clockwise. The chemical
part of the rotation is annulled by reversal of wave vector upon reflection.
Thus Pchemical = al

Since in effect there is a single transmission.
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5.198

5.199

On the other hand
Pmeg = ~NHVI

To get the signs right recall that dextro rotatory compounds rotate the plane of vibration in
a clockwise direction on looking against the oncoming beam. The sense of rotation of light
vibration in Faraday effect is defined in terms of the direction of the field, positive rotation
being that of a right handed screw advancing in the direction of the field. This is the opposite
of the definition of Qemica for the present case. Finally

¢=(a-VNH)I
(Note : If plane polarized light is reflected back & forth through the same active medium in
a magnetic field, the Faraday rotation increases with each traveresal.)

There must be a Faraday rotation by 45° in the opposite direction so that light could pass
through the second polaroid. Thus
Vi Hmin = n/4

n/4 _45x60 A

Vi = 259x026 m

= 401 k_é
m

or Hm =

If the direction of magnetic field is changed then the sense of rotation will also change. Light
will be completely quenched in the above case.

Let r = radius of the disc

. S . . 1
then its moment of inertia about its axis = Em r?
In time ¢ the disc will acquire an angular momentum

i
tmr?-=
W

when circularly polarized light of intensity / falls on it. By conservation of angular momentum
this must equal

Em r2 * Wg
where wy = final angular velocity.
E i p m o wy
quating = Al
® c mc wy
But 2m-v—)\'sot- I

Substituting the values of the various quantities we get
t = 119 hours
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5.5 DISPERSION AND ABSORPTION OF LIGHT

5.200 In a travelling plane electromagnetic wave the intensity is simply the time averaged magnitude
of the Poynting vector :-

= <|ExH|> = <\/§%Ez> - <ceEl>

1
on using c= , EVegy =HVyy.
V g Mo

(see chapter 4.4 of the book).

Now time averaged value of E%is E02/2 50

1 .‘/ 21
= EC EOE()z or Eo = —c——'

80’

(a) Represent the electric field at any point by E = Egsinw ¢ . Then for the electron we
have the equation.
mx = eEysinwt

eEo

SO X = - > sinw ¢
mw

The ampitude of the forced oscillation is

eE,
02- e2v_2_1_ =51x10"%cm

mw mw C¢gp

The velocity amplitude is clearly

E
€ o 51x10 % x34x10% = 173 cm/sec
m

(b) For the electric force
F, = amplitude of the electric force

= eEo

For the magnetic force (which we have neglected above), it is
(evB) = (evugH)

E
= evE [t = evV—
0 Ko c
writing v = -vgcoswt

eEo

where Vg = ——
mo

we see that the magnetic force is apart from a sign

eVOEo
2c¢

sin2wt
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F
Hence F—'" = Ratio of amplitudes of the two forces
e

Yo _ s, -1
P 29x10

This is negligible and justifies the neglect of magnetic field of the electromagnetic wave
in calculating v, .

5.201 (a) It turns out that one can neglect the spatial dependence of the electric field as well as
the magnetic field. Thus for a typical electron
mro = eEysinwt

—
— eEy | . . .
sor = — 2 sin w ¢ (neglecting any nonsinusoidal part).

The ions. will be practically unaffected. Then

2
—> npe” —»
P = n,e7'= -2 )
m
— - —> noe2 —>
and D =¢gyE+P = ¢y| 1~ 5 |E
gEmw
Lo "oe2
Hence the permittivity e =1- 7-
gEgmow
(b) The phase velocity is given by
v=akK=——
€
Wp 2 n0e2
So ck=w 1-— , wp =
w gy m
o’ = c2k2+wf,
2
o 2
Thus v=cV 14+ 2P2=c\/1+_____”9_e_)‘2
c“k almcte,
5.202 From the previous problem
2
o=1- hy e
Egmw
1 noez
4Jtze(,mv2

Thus ny = (4 V2 meg/e?)(1-n*) = 236x107 cm ™3
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5.203 For hard x- rays, the electrons in graphite will behave as if nearly free and the formula of
previous problem can be applied. Thus

2
nge
n=1- ° 3
Egm®
no e 2
and nel-———
2ggmw
on taking square root and neglecting higher order terms.
ny e ny 222
So n-1=- 7= T2 3
2ggm o 8n“ggme

We calculate ng as follows : There are 6 x 6023 x 10 electrons in 12 gms of graphite of
density 1:6 gm/c.c. Thus
L 6x6023x107%
0 (12/1:6)
Using the values of other constants and A = 50 x 10~ 2 metre we get
n-1=-54x10"

per c.c

5.204 (a) The equation of the electron can (under the stated conditions) be written as
mx +yx+kx = eEgcos ot

To solve this equation we shall find it convenient to use complex displacements. Consider
the equation
mz +yz+kz = eEge™ """’
Its solution is
eEo e-— iot
z= >
-mo'-iyo+k

(we ignore transients.)

Writing g = :21’;'-, (0(2, = i—
eE .
we find z=7°e"“"/(m3—m2—2iﬂm)

Now x = Real part of z

E,
_emo- cos (w!+@) =acos(wt+Q)
V(0 -0?) +4p* o’
2w
where lan @ = ——j
P PP
sing = ~ 2P

V (0? - w2 +4p% 0’
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(b) We calculate the power absorbed as

PaL Fx> = LeEycosot(-masin(wt+e))>D>

2
eEy1 2w . ==(eEO) Bmo’

—- )
m 2 (05-0°)+4p’0’ m ) (0g-0®)+4pe’

This is clearly maximum when wy = ® because P can be written as

eEo

" (o
@D 2
(m m) +48
2
E,
and Pwsﬁ(e—o) for w = wy

P can also be calculaied from P = < yx-i>

Bmw’(eEym )?

(mg—m2)2+462m2.

= (yw?d/2) =

5.205 Let us write the solutions of the wave equation in the form

A= Aoei(mt-kx)

where k = 2x and A is the wavelength in the medium. If n’ = n+ iy, then

A

k-g—n-n’

(Mo is the wavelength in vacuum) and the equation becomes
A =AgeX* exp(i(wt;-Fx))

where ¥’ = %x and K = %n . In real form,

A =Aye** cos(wt-Kkx)
This represents a plane wave whose amplitude diminishes as it propagates to the right
(provided ¥’ < 0).
when ' = iy, then similarly

A =AjeX*cosmt

(on putting n = 0 in the above equation).
This represents a standing wave whose amplitude diminishes as one goes to the right (if
%' < 0). The wavelength of the wave is infinite (k' = 0).

Waves of the former type are realized inside metals as well as inside dielectrics when there
is total reflection. (penetration of wave).
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5.206 In the plasma radio waves with wavelengths exceeding A are not propagated. We interpret

this to mean that the permittivity becomes negative for such waves. Thus
2

e
0=-1--"10 i o= 28
gomw
252
e
Hence —n';,——-}ﬁ—; =1
4n EgmcC
47 gEqm ¢ 9
or ny = —— 5 — = 1984x10 perc.c
e
- 5.207 By definition
dw d dv
U= = dk(vk) asw =vk = v+kdk
Now  k=2% so dk=- 2Ean W
A %
Thus Uu=v- ké—l. !
‘ d\ T 'y \
*Its interpretation is the following : = ax A=A
[
(g—;) is the slope of the v — A curve at A=1". v { A
At >
Thus as is obvious from the  diagram A
vVi=v()=-N v is the group velocity for A=A'.
dr), o
5208 (a) v = a/VA, a = constant
Then u=v- )\.‘—;—%

(b) v =bk = wk, b = constant
SO o = bk? and u=%(;—)=2bk=2v
c N
(c) v= —u?, ¢ = constant = .
) @ =ck or o=ckV3
4o _ sl _lo 1
Thus u= k—c 3k 3% 3v



224
5.209 We have

Uuv = Egﬂ = Cz
k

dk
Integrating we find

o’ = A+c2k2, A is a constant.

Vol-4
c

) k

and V-'(;‘l-__c—
‘\/ A

1___.

(02

writing this as ¢/Ve (0w ) we get €(w) = 1—-'%—
W)

(A can be +ve or negative)

5.210 The phase velocity of light in the vicinity of A = 534 nm = Ay is obtained as

c 3x10°
V) =G0 T Tew

To get the group velocity we need to calculate

= 1-829 x 10 m/s

(3—;) . We shall use linear
A=y
interpolation in the two intervals. Thus

(dn) =—ﬂ=—28x10’5 per nm
A = 5215

dr 25
(3—;) --%—- -182x10"° pernm
A = 5615

There (dn/d )\ ) values have been assigned to the mid-points of the two intervals.
Interpolating again we get
an =|-28+28,125]x10°" permm = -249x 10 °pernm.
dh 40 |
A =534 \
Finally

At A = 534

3x10° 534
1-640 1-640

x 249 x 1077 ] m/s = 1-59 x 108 m/s
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We write

\ % =a+b)
so w=k(a+bh)=2nb+ak.
(since k = 2—;—) Suppose a wavetrain at time ¢t = 0 has the form

F(x,0) -f Flkyelt*ak

Then at time ¢ it will have the form

F(x,t) -f F(k)eikx=ivt g

=f f(k)eiks-i@abeaky =f £ (k) eik(x-at) ~i2xbi g,

F(x,t)=F(x-at,0)
so at time ¢ = v the wave train has regained its shape though it has advanced by a <.
1
2
of the components has been cut off. On passing through the solution the plane of polarization

of the light beam will rotate by
¢ =VIH

and its intensity will also decrease by a factor e *! The plane of vibraton of the light wave
wll then make an angle 90° - ¢ with the principal direction of the analyzer Nicol. Thus by
Malus’ law the intensity of light coming out of the second Nicol will be

On passing through the first (polarizer) Nicol the intensity of light becomes = I, because one

1 —-x! 2
=Ip-e™*" - cos*(90° -¢)
2 L\ /5%
= -;-IO e *sinp.
(a) The multiple reflections are shown below. Transmis- IOU‘?) (1-9) 1o
sion gives a factor ( 1 - p ) while reflections give fac-
tors of p. Thus the transmitted intensity assuming ?2(1_?)1'0
incoheren light is
(1-p) I+ (1= p)° p* Iy + (1- p)’ p* I ...

= (1-pPI Q1 +p2+pt+p%+..)

2/1_0)2
- (1—0)210><1_1p2 -Ioi:g. (I-eggz_[o $°(1-9)" I,
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5.214

5.215

5.216

(b) When there is absorption, we pick up a factor o = e~*% in each traversal of the plate.
Thus we get

(1-p)ol+(1-p)ap’ly+(1-p)c’p*Iy+...
=(1-p)Yol(1+0*p’+c*p+...)
-5,00-p)
1-0°p?
We have
u=e % (1-p)
u=e X% (1-p)

where p is the reflectivity; see previous problem, multiple reflection have been ignored.

Thus A ex(%-4)
T
T
In|-2
2 0.35 cm™}
or X = = 0.35 cm
d)-d,

On each surface we pick up a factor (1 - p) from reflection and a factor e ! dueto absorption
in each plate.

Thus T = (1-p)Ne V!
1 - py?¥ o
Thus X =N In _&—t = 0.034 cm™.

Apart from the factor (1 - p) on each end face of the plate, we shall get a factor due to
absorptions. This factor can be calculated by assuming the plate to consist of a large number
of very thin slab within each of which the absorption coefficient can be assumed to be constant.

Thus we shall get a product like
e-x(x)dx e—x(x+dx)dxe—x(x+2dx)dx

This product is nothing but
-j' x(x)dx
e
Now % (0) = %1, x(!) = %, and variation
with x is linear so }(x) = X1+§(X2'X1)
Thus the factor becomes

]
x
- ["l’T("z"‘l)]“ "%(Xx"’)(.z)l
e ° = @
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The spectral density of the incident beam (i.e. intensity of the components whose wave length
lies in the interval A& A +dA) is
)
MN-M

The absorption factor for this component is

XA+ )‘2 X(Xz Xl)}

dk, AIS As M

e

and the transmission factor due to reflection at the surface is (1 -p )2. Thus the intensity of
the transmitted beam is

-1 A+ —kl(Xz"‘Xl)
(1-p) fdxe b

MM
A'I.
=(%-x, )} e Ml_ g%t
- (1-p)—2 -l (l-e 7T N) = (1-p)I &E—=€¢
SRS v vl ((xz—xl)‘me x0a=h) = (1=p)"h o

At the wavelength Ag, the absorption coefficient vanishes and loss in transmission is entirely
due to reflection. This factor is the same at all wavelengths and therefore cancels out in
calculating the pass band and we need not worry about it. Now

Ty = (transmissivity at A = Ag) = (1-p)°
T = transmissivity at A = (1-p)2e %(*)4

The edges of the passband are Ay + A and at the edge

2
ALY
T -ed2n)
r ],
A\ 1
Thus 2)‘0- (lnn)/md
1 1
or AN =2 d(lnn)

We have to derive the law of decrease of intensity in ah absorbing medium taking in to
account the natural geometrical fall-off (inverse sequare law) as well as absorption.
Consider a thin spherical shell of thickness dx and internal radius x. Let
I(x) and I(x+dx) be the intersities at the inner and outer surfaces of this shell.

Then anxI(x) e *¥* = 4:t(x+fdx")21 (x+dx)

Except for the factor e *“* this is the usual equation. We rewrite this as
PI(x) =I(x+dx)(x+dx)?(1+ydx)
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= I+%dx)(x2+2xdx)(1+xdx)
or x? %+xx21+2xl =0
Hence i(x21)+x(x21) =0
dx
0 I =Ce™*”

where C is a constant of integration.
In our case we apply this equation for as x<s b
For x < a the usual inverse square law gives

P

I(a) =
(a) 4na’
Hence C-—(})—e"'z
4n
L] -x(b-a)
and I(b) = —e x(
(b) 4nb

This does not take into account reflections. When we do that we get

I(b) = (1-p)ex(b-9)

4n b’

*4 and so the intensity will decrease

e*?

5.220 The transmission factor is e~
= e¥0x1U3x01 _ 58.4 timestimes

(we have used p = u/p ) x p and used the known value of density of lead).

5.221 We require pp, dp, = @y dy;

Wpyp Hai
or 22 ppsdpy = | 25| pasda
Pprb Pai

72:0x 113 xdp = 3-48 x 27 x 2:6

dpp = 0:3mm

5.222 ud

]
LY

N =

or d= — = 0-80 cm

5.223 We require N plates where
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5.6 OPTICS OF MOVING SOURCES

5.224 In the Fizean experiment, light disappears when the wheel rotates to bring a tooth in the

5.225

5.226

position formerly occupied by a gap in the time taken by light to go from the wheel to the
mirror and back. Thusdistance travelled = 2/ Suppose the m™ tooth after the gap has come
in place of the latter. Then time taken

Z(m-1 +1sec. in the first case

2Zn1
= 2m+lsecin the second case = S —
2zn, z(ny-n;)
Then c=21z(ny-n;) = 3024x10%m/sec

When v << c time dilation effect of relativity can be neglected (i.e. £ =~ r) and we can use
time in the reference frame fixed to the observer. Suppose the source emits short pulses with
intervals 7. Then in the reference frame fixed to the receiver the distance between two

seccessive pulses is A = ¢ T - v, T, when measured along the observation line.
Here v, = v cos 0 is the projection of the source velocity on the observation line. The frequency
of the pulses received by the observer is

_c__ Yo Vi Source
v N = . v. Vo (1 + C)
- ~
H ! SS
(The formula is accurate to first 'V'TOG : \-\ X/
order only) VA L S obserber
Thus V-Vvg V; vcos0 T ?
_——__— = ———— O
Vo c c be A Cho >
The frequency increases when the source
is moving towards the observer.
Av | Y cos 0 from the previous problem >
v - C P p \%
But v A = c gives an differentiation
Av _ _AX
v A
v2 2T
So AN=-AY 5 cosO =-AY — cos0
c mc
on using T = %—mvz, m = mass of He* ion

We use mc? = 4x 938 MeV. Putting other values
AN = -26nm
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5.227

5.228

5.229

One end of the solar disc is moving towards us while the other end is moving away from us.
The angle 0 between the direction in which the edges of the disc are moving and the line of
observation is small (cos 0 = 1). Thus
AL 20R
A ¢

where ® = %.E is the angular velocity of the Sun. Thus

© = cAM
2R
4xRA
So T="Can
Putting the values (R = 6:95x10%m)
we get T = 24-85 days

Maximum splitting of the spectral lines
will occur when both of the stars are moving in the direction of line of observation as shown.
‘We then have the equations
AN 2v
(%)=
m

mv2

ym
T 4R?
xR
v Obs.

T =

From these we get

d=2R = (ﬂ) ct/n = 297x10"km
m

3
m = (%—}) Sv/2ny =29x10% kg
m

We define the frame S (the lab frame) by the condition of the problem. In this frame the
mirror is moving with velocity v (along say x- axis) towards left and light of frequency oy

is approaching it from the left. We introduce the frame S.' whose axes are parallel to those
of S but which is moving with velocity v along x axis towards left (so that the mirror is at
rest in S'). In S’ the frequency of the incident light is

o = ® 1+v/c vz

! °l1-v/c
In S.' the reflected light still has frequency ®; but it is now moving towards left. When we
transform back to S this reflected light has the frequency
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© =0 1+v/c 1/2-0) 1+v/c
Hi1-v/c °l1-v/c

]

In the nonrelativistic limit

(0] ~mo(1+%!)

From the previous problem, the beat frequency is clearly
Av = voz—cv— =2v/(c/vy) = 2v/)g

+3

Hence VvV o= %)\.AV = 10 x 50 cm/sec = 900 km/hour

2

From the invariance of phase under Lorentz transformations we get
wt-kx = 't -kx

Here o = c k. The primed coordinates refer to the frame S ' which is moving to the right
with velocity v :-

Then x' = y(x-vt)

-1

where Yy = (V 1-vZ/c? )

Substituting and equating the coefficients of ¢ & x x.x'
® yw’+yk’v-m'1;"/c— ’
V1-v¥e?
1+v/c Z

k = ym—zv+yk’ =
c

k’—
Vi-v¥e? 2,

From the previous problem using

2n
k = X
. 1+v/c
we get A —KV Tov/e
v
1+— 2
c A
Thus 1-v/c 22
2 a2 2 2
or v/c=)\ -\ =564 - 434 - 0256

N2 ea? 564% + 4347
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5.233 As in the previous problem

v A2 \2
c  AZ4n?
Ay,
A’
S0 V=c—"F = 71x10*k m/s

B

5.233 We go to the frame in which the observer is at rest. In this frame the velocity of the source
of light is, by relativistic velocity addition foumula,
3 1

~Cc—-—-C

4 2

3.1 ,2
1-(4c 2c/c)

When this source emits light of proper frequency wg, the frequency recorded by observer

will be
o =,V 1_V/C+v/c =V 3 ®
OV 14+v/c B 7 0

Note that w < g as the source is moving away from the observer (red shift).

vV = ='2—£
5.

5.235 In transverse Doppler effect.

o=wV1-p mo(l-%ﬁz)

. (1.1p2) 1g2
So A p mo(1+23) ko(1+zﬁ)
Hence Ax-—;-ﬁzx
» V2T
Using f° = 5 = —, where T = K.E of H atoms
c mc
A}‘.—-L)»-—Lx656-3nm—0-70nm
T mcr . 938 B

236 (a) Iflight is received by the observer at P at the moment O' vt 0
when the source is at O, it must have been emitted \\2 9 ™7 > )
AY
N\
\

by the source when it was at O’ and travelled along
O'P. Then if O' P=ct,O'O=vt

]

]

:

v AY

apd cos@ = = = B cts, i
|

]

i

In the frame of the observer, the frequency of the \
light is w while its wave vector is
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%(oose,sinG,O)

we can calculate the value of w by relating it to proper frequency w. The relation is

Wy = %ﬁ(l—ﬁcose)
o v

1-ve¢ Vi- vi/e?
is an invariant which takes the value w, in the rest frame of the source).

wV 14 g
L

(b) For the light to be received at the instant observer sees the source at O, light must be
emitted when the observer is at O at 90° = 6
cosB =0

Then as before wy = 2 o w= wgV 1 —Bz = 1-8 x 10" scc !

Vi1-p?

In this case the observer will receive light along OP and he will “sce” that the source is
at O even though the source will have moved ahead at the instant the light is received.

(To derive the formula is this form it is easiest to note that

Thus w = = 5x10¥sec™?!

An electron moving in front of a metal mirror sees an image charge of equal and opposite
type. The two together constitute a dipole. Let us look at the problem in the rest frame of
the electron. In this frame the grating period is Lorenz contracted to

d = dV1-v¥e

Because the metal has etchings the dipole moment of clectron-image pair is periodically

4

disturbed with a period d;-
v
d
Due to Doppler effect the frequency observed at an angle 0 is

Vi-(v/c) v/d

= =

The corresponding frequency is —; which is also the proper frequency of radiation emitted.

1-Ycos @ 1-Ycos @

c c
The corresponding wave length is A = % = d(%—cos 0]
/

Putting cmv,0 =45 ,d=2pnmwe get
A= 0586pum



234

5.238 (a) Let v, be the projection of the velocity vector of the radiating atom on the observation
direction. The number of atoms with projections falling within the interval v, and

5.239 In vacuum inertial frames are all equivalent; the velocity of light is ¢ in any frame. This
equivalence of inertial frames does not hold in material media and here the frame in which

Ve +d v, is

n(vy)dv, _ exp(-mv¥/2kT)dv,

The frequency of light emitted by the atoms moving with velocity v, is

v
W = wy ( 1+ -Ex- . From the expressions the frequency distribution of atoms can be found

:n(w)dw = n(v,)dv, Now using

@ - Wo
Vg = C ™~
mc? o\
we get n(o)do exp(—ZkT(l—-m—o) )

Now the spectral radiation density I, = n,

““(l'm_) mc?
Hence I, = Ije ,a= .

(The constant of proportionality is fixed by I .)

(b) On putting ® = w, + %Aw and demanding
I, =12
2
1 ()
]
we get 5 = e
Ao 2
so a(m) = In2
Hence Lo =\/(21n2)kT/mc2
2(1)0
and é—(:?— = 2\/(2]:12)kT/mc2

the medium is at rest is singled out. It is in this frame that the velocity of light is -f;whcte

n is the refractive in desc of light for that medium.

The velocity of light in the frame in which the medium is moving is then by the law of

addition of velocities

cdw
@y
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[4 [
—+vV —+vV
n n [ v
p = v =(—+V)(1—cn+...)
n
1+5v/c? 1+—
n cn
c \'4 c 1
=—+Vv-T+..m —+V 1——2
n n n n

This is the velocity of light in the medium in a frame in which the medium is moving with
velocity v<<c.

Although speed of light is the same in all inertial frames of reference according to the
principles of relativity, the direction of a light ray can appear different in different frames.

This phenomenon is called aberration and to first order in Y(-:-, can be calculated by the

elementary law of addition of velocities applied to light waves.
The angle of aberration is

-1V
tan” . )

and in the present case it equals %6 0 on either side. Thus equating C

Y = tan 380 = 2:50(30 radians)

2
c 3x102 41 = !
or V=500 = X 3000 180 1%
_3x4-1xn

4 — .
36x36 x 10" m/s = 29-8 k m/sec

We consider the invariance of the phase of a wave moving in the x -y plane.
We write

o't =KX -kyy = ot-kx-kyy

From Lorcntz transformations, L.H.S.

-m'y(t —zﬁ) Ke(x-vt)y-kyy
Y
Y

50 equating o=y(o'+vky)

k; = (k’,+1c‘,_j’— and &, = K,
so inverting o =y(o-vk)

, v

kx'Y(kx"—'zg)

c

Ky =k

writing Ky =kKcos0', ky = kcos O

= Kk'sin®, k, = ksin@
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5.242

we getonusing ck' =o', ck=w

cosf = Sos0-B
1-fcosbO

where B = ‘c_, and the primed frame is moving with \

velocity v in the x— direction w.r.t the unprimed frame. -

For small § << 1, the situation is as shown. - / >\
We see that cos® = -P o=

if 0=-mn/2.

Then e'=-(-§+sm'1ﬁ)

This is exactly what we get from elementary nonrelativistic law of addition of velocities,

The statement of the problem is not quite properly worked and is in fact misleading. The
correct situation is described below. We consider, for simplicity, stars in the x — z plane. Then
the previous formula is applicable,

and we have '

cos 0’ = cos 0 _ cos 6 - 0-99 -
1-Bcos®@ 1-099cosb 9’:—5,9=—8,1°

The distribution of 8’ is given in the diagram N
below 9:___13
The light that appears to come from the 2
forward quadrant in the frame 0=-171.9°
K(®=-mto8=-mn/2) is compressed into
an angle of magnitude + 8:1° in the forward 0-’:0"0’:}/(/”’.90 0=-T>0L-7
direction while the remaining stars are
spread out.

The three dimensional distribution can also be found out from the three dimensional
generalization of the formula in the previous problems.

The field induced by a charged particle moving with

velocity V excites the atoms of the medium turning them P
into sources of light waves. Let us consider two arbitrary

points A and B along the path of the particle. The light

waves emitted from these points when the particle passes

them reach the point P simultaneously and reinforce each C
other prm'/ided théy are in phase which is the case is ]
general if the time taken by the light wave to propagate A >V
from the point A to the point C is equal to that taken by A

the particle to fly over the distance AB. Hence we obtain

v
cosB-v
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where v = -f; is the phase velocity of light. It is evident that the radiation is possible only if
V >v i.e. when the velocity of the particle exceeds the phase velocity of light in the mediuin.

We must have

c 3 10 v, L
Vzn=16x10 m/s or P
For electrons this means a K.E. greater than
2
m,c n
T,=2 £ -m,ct = m, | ——-1
1 2 V-1
(L )
= 0511 using m, ¢ = 0:511 MeV = 0-144 MeV

For protons with m, ¢t = 938 MeV

T, 2 938| ——L1—— 1= 264MeV = 0264Gev
1 \2
Vi-(s)
Also Ton = 296 MeV = mc? "
1 \2
Vi-(i)
Then mc® = 1053 MeV. This is very nearly the mass of means.
v
From cos0 = v
we get V =vsecO
so stsecessece_sec30°_2/\[§= 4
c c S 15 32 33

Thus for electorns

T. = 0-511 —1—-——-—1 = 0~511[V 27 —1] = 0289 MeV

P 11
'z
Generally T =mc? 1 -1
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5.7 THERMAL RADIATION. QUANTUM NATURE OF LIGHT

5.246 (a) The most probable radiation frequency w,, is the frequency for which
3
4, - 3m2F(w/T)+%F(w/T) =0

do e
The maximum frequency is the root other than w = 0 of this equation. It is
© = - 3TF(w/T)
F(w/T)

or w,, = xo T where x; is the solution of the transcendental equation
3F(x)+xF'(x5) =0
(b) The maximum spectral density is the density corresponding to most probable frequency.
It is
(4 )max = ng(xo)T3 aT?
where x; is defined above.

(c) The radiosity is

M, = %fmsF((—;;)dm =T %fx3F(x)dx aT!
0 0

5.247 For the first black body

b
(A = T,
b b
H T. b o, 1747 kK
ence 2% “b+T, AN
—+AM
T,
5.248 From the radiosity we get the temperature of the black body. It is
M va 4 A
T =|—¢ - __:ii)"_lg__s = 8529K
o 567 x 10
Hence the wavelength corresponding to the maximum emissive capacity of the body is
b 029 -4
—- = —— = 3 = 34
T 852'9cm 34x10""cm = 34pm

(Note that 3:0 W/cm? = 3.0 x 10* W/m?)
5.249 The black body temperature of the sun may be taken as

029 _ 602k

® = 048x10°*
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Thus the radiosity is
M,o = 567x 1078 (6042)* = 0-7555 x 10° W/m?
Energy lost by sun is
47 (695)% x 10 x 0-7555 x 10® = 4-5855 x 10%° watt
This corresponds to a mass loss of

45855 x 10
9 x 106
The sun loses 1 % of its mass in
197 x 10%° x 102
51x10°

kg/sec = 5-1 x 10° kg/sec

sec = 1:22 x 101 years .

For an ideal gas p = nk Twhere n = number density of the particles and k = 1—{-;—- is Boltzman
A

constant. In a fully ionized hydrogen plasma, both H ions (protons) and electrons contribute
to pressure but since the mass of electrons is quite small (=~ m,/1836), only protons

contribute to mass density. Thus

and p= MT

Nymy
where my; = m, is the proton or hydrogen mass.

Equating this to thermal radiation pressure

ZERT.E-& 4 40T
NAmH 3 3 c

Then T3 -

where . = 2N, my = molecular weight of hydrogen = 2 x 10 %kg.

173
Thus T = (3—°95) ~ 189 x 10’ K
oM

In time dt after the instant f when the temperature of the ball is T, it loses
nd>oT dt

Joules of energy. As a result its temperature falls by - dT and
nd’aT*dt = -g—dspCdT

where p = density of copper, C = its sp.heat
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5.252

Thus dt = - dedT
60 T4
or to=g-Mf—dT —Q—(n -1) = 294 hours .
6o T 1807

Taking account of cosine low of emission we write for the energy radiated per second by the
hole in cavity # 1 as
dI(Q) =Acos8dQ

where A is an constant, d Q is an element of solid angle around some direciton defined by
the symbol Q . Integrating over the whole forward hemisphere we get
w2

1 =Afc0392nsined6 =
0

2
We find A by equating this to the quantity o T 14 . % o is stefan-Boltzman constant and d

is the diameter of th hole.
Then A= -}TG d? T{‘
Now energy reaching 2 from 1 is (cos @ =~ 1)

%o AT AQ

(nd*/4)
2

where AQ = is the solid angle subtended by the hole of 2 at 1. {We are assuming

d<<ls0 AQ = area of hole / ( distance )’ }.
This must equal oT,nd%/4
which is the energy emitted by 2. Thus equating

or Tz-Tlvzdl

Substituting we get T, = 0380 kK = 380K.
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5.253 (a) The total internal energy of the cavity is

U-4—°1T4V

Hence Cy = (‘3;’) l—65°1T3V

— 16 x 567 x 10°
3x10®

1:6 x 5:67
.’3

x 10° x 103 Joule/ °K

nJ/K = 3:024nJ/K

(b) From first law
TdS =dU+pdV

- VAU+UdV+2av (p - —gl)

-vau+3lay

3
160 3 16 o
VT AT+ T2 T'dv
so ds= l‘zf’vr dT+ 1—63T av
-a( ¥y
- 3C
16 o 1
Hence S = 3CV v = 1008 nJ/K.

5.254 We are given

(a) Then ———=(%_% w =0
SO w

(b) We determine the spectral distribution in wavelength.

-u(MT)dr =u(w,T)dw

But m=2:n:c or }‘=2uc =Q
A ) )

so d)»=-%dw,dw=—%dk
w A

(we have put a minus sign before d A to subsume just this fact d A is -ve where d o is
+ve.)
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' ' 4 . '
WA, T) -%u(Q T) -€ Aexp(-ac)

This is maximum when

a—ﬁ-6=1’1 -5+_aC'
.90 AOAT
aC' 2mca
or )»,-5 =57 = 1-44um
5.255 From Planek’s formula
o’ 1

Uy = 55 S5
2o ek _

(a) In a range % w <<k T (long wavelength or high temperature).
u, > h ms __1.__
° a2 ho

k

2
= ’:;Cs kT, usinge® m 1+x for small x.

(b) In the range # w >> T (high frequency or low temperature) :
“ho

ho T
kT>>1 SO e >>1

o’ -
and U, = —— € ho/kT
n’c

5.256 We write
uydw = u,dv where ® = 2mv

Then 5. 2n'h(2:tv)3 1 16 h v 1
v 2 o 2THV/AT _ | 3 o 2TRVAT _
Also —ﬂ(k,T)dl.=uu,dw where )\.=ch,
do = -22E ),
py
- 2xc 2nc
u(h, T)= 2 u( x ,T)

2 | A -

_2mc(2nc > h 1 16 2% ch 1
= B 2 ART 25 o2 he/ART _
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5.257 We write the required power in terms of the radiosity by considering 6nly the energy radiated
in the given range. Then from the previous problem

AP = -:-a(x,,,, T)AM

472 cPh AAN
A.,":, Q27 eWEN, T _ |

But AT = b

a2 th A\
= }\i o2Renkb _ |

) AP AA

Using the data

2nch - 2nx3x10°x105x0"3*
kb 138x10"2x29x10"3

= 4.9643

1 -3
—_ = 703x10
ezsu"h/kb_ 1
and AP = 0312 W/cm?

5.258 (a) From the curve of the function y (x) we see that y = 0-5 when x = 1-41

029
Thus k-1-41x3700 cm = 1-1105 um.
(b) At 5000 K
A = 9§3x10'6m = 058um

So the visible range (0-40 to 0-70) p m corresponds to a range (0-69 to 1-31) of x.
From the curve

y(0-69) = 007

y(131) = 0-44
so the fraction is 0-37

(c) The value of x corresponding to 0-76 are

x, = 076 / 9(%9 = 0-786 at 3000K
x, = 076 [ %’-_252 = 1-31 at S000K
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The requisite fraction is then
~ 4

B _(GY | lon

Py I -y

ratio of ratio of the
total power fraction of
required wavelengths
in the radiated power

4
5 1-044
) (3) 1oz =491

5.259 We use the formula ¢ = B
Then the number of photons in the spectral interval (0w, w +d w ) is

n(w)do= u(m;zz)')dm = n?; e7”"/k1T-1 do
using n(w)do = -n(A)di
we get din(\) =n(2—;£)%dk
- (2nc) 1 dr

J't2 c3 xt er'hc/kAT_ 1

8xn d\
T \E G2nReART

5.260 (a) The mean density of the flow of photons at a distance r is

<j> = P Zn'hc= PA m-2s2
4xr? A 8n’hcr
i
- 10 x -589 x 10 m-2s-1

8 2 x 1:054 x 1034 x 10° x 4

- 210 x 589 % 10 cm =251
8n°x 1054 %12

59x10%cm 257!

(b) If n(r) is the mean concentration (number per unit volume) of photons at a distance r
form the source, then, since all photons are moving outwards with a velocity c, there is
an outward flux of cn which is balanced by the flux from the source. In steady state, the
two are equal and so
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<Jj> P
n(r)= = =N
c 8 Phc*r?
5o ,=_l_\/lQL

2nc 2hn

L1 10 x 589 x 10~°
6nx10% ' 2x1054x10">*x 10 x 10°
10? 5-89

iy 2108 = 887 metre

5.261 The statement made in the question is not always correct. However it is correct in certain
cases, for example, when light is incident on a perfect reflector or perfect absorber.

Consider the former case. If light is incident at an angle
0 and reflected at the angle 0, then momentum transfered
by each photon is

Zﬁ—\i cos 0
c

If there are n(v)dv photons in frequency interval
(v,v+dv), then total momentum transfered is

f2n(v)-hc—vcos9dv
0

2,

cos O

5.262 The mean pressure <p> is related to the force Fexerted by the beam by
2

4

The force F equals momentum transfered per second. This is (assuming that photons, not
reflected, are absorbed)

=F

<p>x

E E E
2pcr+(1—p)cr—(1+p)ct.

The first term is the momentum transfered on reflection (see problem (261)); the second-on
absorption.
<p> = 4(1 4; p)E
md“ct

Substituting the values we get
<p> = 483 atmosphere.
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5.263 The momentum transfered to the plate is
E A A
==(1- in0 :-cos O
” (1-p){sin® i-cosB j}
v 0

( momentum transfered + %:p {-2cos H } > yé\)
on absorption ) ll

( momentum transtered
on reflection )

- %(1-p)sin9f—%(l+l’)cosﬂf ()
Its magnitude is

%:\/(l—p)zsin29+(1+p)2c0529 = %\/1+p2+2pcos29
Substitution gives 35 n N.s as the answer.

5.264 Suppose the mirror has a surtace area A.

The incident bean then has a cross section of A cos 0 and
the incident energy is /A cos 0. Then the momentum
transfered per second ( = Force ) is from the last problem

IAcosO(1+ )(:()Sejf«_"[chosO(1 p)smez

The normal pressure is then p = E( 1+p)cos’0

(j is the unit vector 1 to the plane mirror.)

Putting in the values
. 4
2 02019 L 18xl - 06nNem™
3x10 2

5.265 We consider a strip defined by the angular
range (0,0+d0). From the previous
problem the normal pressure exerted on this

strip is [
21 cos® 0
¢ 8
This pressure gives rise to a force whose
resultant, by symmetry is in the direction of \v
the incident light. Thus <
w2

F = ZC—I— fcoszﬂ-cose-2nR25in9d9 = nsz

0
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Putting in the values

. 4
Fanx25x10-437010 ¢ 183N
x 10
5.266 Consider a ring of radius x on the plate. The normal pressure on this ring is, by problem (264),
2 P 2
A2 agyy o870
C4nm(x*+N°R")
" 2nc (Z+02R%)?
The total force is then [ X
R
- S nR
P n°R
Tne (2 2R2)22uxdx
0 tn
R*(14n’)
Py'R f dy
2
2c¢ anz y

='Pn2R2 1 1 - P
2¢ | n?R? R*(1+m))| 2c(1+7%)

5.267 (a) In the reference frame fixed to the mirror, the frequency of the photon is, by the Doppler

shift formula
= _ 1+8 - V1- 52
1-p 1-8
(see Eqn. (5.6b) of the book.)
In this frame momentum imparted to the mirro? is

2#6_2#0)‘/1+ﬂ
c 1-p°

() In the K frame, the incident particle carries a momentum of # w/c and retums with
momentum

hol+f
c 1-B
(see problem 229). The momentum imparted to the mirror, then, has the magnitude
hofl+f . |_ 200 1
c |1-8 c 1-8
Here B =

o<
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5.268 When light falls on a small mirror and is reflected by it, the mirror recoils. The energy of
recoil is obtained from the incident beam photon and the frequency of reflected photons is
less than the frequency of the incident photons. This shift of frequency can however be
neglected in calculating quantities related to recoil (to a first approximation.)

Thus, the momentum acquired by the mirror as a result of the laser pulse is

- - 2E
|pf -pl| -
Or assuming p, = 0, we get
. 2E
|#r] =~
Hence the kinetic energy of the mirror is
B2
2m m cz

Suppose the mirror is deflected by an angle 6. Then by conservation of energy

2
final PE. = mgl(1-cos0) = Initial KE. = 2%
mc
0 2E?
or mgl2sin’ = = —
d 2 . mc
2 mc m
Using the data.  sin 9 = 13 = 4377x1073

2 107°x3x10°V98x-1
This gives 0 = 0-502 degrees .

5.269 We shall only consider stars which are not too compact so that the gravitational field at their
surface is weak :
-Yzﬂ<< 1
c‘R

We shail also clarify the problem by making clear the meaning of the (slightly changed)
notation.
Suppose the photon is emitted by some atom whose total rclativistic energies (including the
rest mass) are E; & E, with E; <E,. These energies are defined in the absence of
gravitational field and we have
E,-E,

h

as the frequency at infinity of the photon that is emitted in 2 —> 1 transition. On the surface
of the star, the energies have the values

Wy =
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E, yM M
E,=E-—I= g [1-1=
2 2 C2 R 2( CzR)
M
E) = E[1-1=
1 1( c2R)
Thus, from @ = E5 - E’', we get
s m(i-2

Here w is the frequency of the photon emitted in the transition 2 —> 1 when the atom is on
the surface of the star. In shows that the frequency of spectral lines emitted by atoms on the
surface of some star is less than the frequency of lines emitted by atoms here on earth

(where the gravitational effect is quite small).

Finally Ao - - L—f{
o c“R
The answer given in the book is incorrect in general though it agrees with the above result
for Xzﬂ <<1.
c“R

The general formula is

2nk'hc -eV
2nhc
Thus A= eV
Now Ad = 2TRC (1-1)
eV "
Hence V- M(ﬂ—'—l) = 159kV
eA) n
We have as in the above problem
Zn;‘ﬁc -eV

On the other hand, from Bragg’s law
2dsino = kA = A\
since k = 1 when o takes its smallest value.

Thus Ve-"RC  _ 30.974kV ~ 31KV,
edsin a
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5.272

5.273

5.274

The wavelength of X~ rays is the least when all the K.E. of the electrons approaching the
anticathode is converted into the energy of X- rays.
But the K.E. of electron is

¢ [ —1 -1 ]
Vi-v¥/e
(mc? = rest mass energy of electrons-= 0-511 MeV)

Thus 2nhc

=T,

or A=

Zn'hc_Zu'h -1
V1-v¥c?

2nh 1

= "Y-
mc(y-1) Vi-v2/2

The work function of zinc is
A = 374 romane = 374 x 1-602 x 10 ** Joule
The threshold wavelength for photoelectric effect is given by

= 270 pm.

2nhc
ot A
Ao
or Ao=27f:c=331-6nm

The maximum velocity of photoelectrons liberated by light of wavelength A is given by

1 1
Emv = Z:t'hc(}‘ )‘0)

So Vo \/‘”:nl(%-i) = 655x10°m/s

From the last equation of the previous problem, we find

Thus

or
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1 (n2 1 2
and —_— = - -1
" (M ).1)/(" )
n-=
2ahc 2nhc M
So A= = = 1-88 eV
Ao %3 n2—1 ©

5.275 When light of sufficiently short wavelength falls on the ball, photoelectrons are ejected and
the copper ball gains positive change. The charged ball tends to resist further emission of
electrons by atiracting them. When the copper ball has enough charge even the most energetic
electrons are unable to leave it. We can calculate this final maximum potential of the copper
ball. It is obviously equal in magnitude (in volt) to the maximum K.E of electrons (in electron
volts) initially emitted. Hence

2nhc
Pmax = Ne -Ac

= 8-86 — 4-47 = 4-39 volts
(A.. is the work function of copper.)

5.276 We write
E =a(l+coswt)coswyt

= acosm0t+-;—[cos(mo—m)t+cos(mo+m)t]
It is obvious that light has three frequencies and the maximum K.E. of photo electrons ejected
is
h(o+wg)-AL
where A;; = 2:39 ¢V. Substituting we get 0-37eV.

5.277 Suppose N photons fall on the photocell per sec. Then the power incident is

2nhce

N

2nhc
A

2nhc
el

electrons have been emitted. Thus the number of photoelectrons produced by each photon is

w = 2nhct
T ek

This will give rise to a photocurrent of N J

which means that N J

= 00198 =~ 0-02

5.278 A simple application of Einstein’s equation

1-mvﬁm =hv-hvy =

2

2 nhe
A

—Acs
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5.279

gives incorrect result in this case because the photoelectrons emitted by the Cesium electrode
are retarded by the small electric field that exists between the cesium electrode and the Copper
electrode even in the absence of external emf. This small electric field is caused by the contact
potential difference whose magnitude equals the difference of work functions

%(Ac“ ~A)volts.

Its physical origin is explained below.
The maximum velocity of the photoelectrons reaching the copper electrode is then

1 1 2xhc
Emvgl - imvtz)'(Acu'Au) - N -Au
Here v is the maximum velocity of the photoelectrons immediately after emission. Putting

the values we get, on using A, = 447¢V, A = 022um,
Vp = 641 x10°m/s

The origin of contact potential difference is the following. Inside the metals free electrons
can be thought of as a Fermi gas which occupy energy levels upto a maximum called the
Fermi energy Ep . The work function A measures the depth of the Fermi level.

Outside
'W ¥ BrAr-Az
A At 1
* \) M
L
_._.__L___._; |
[ 7

Inside metal
When two metals 1 & 2 are in contact, electrons flow from one to the other till their Fermi
levels are the same. This requires the appearance of contact potential difference of A; -4,
between the two metals externally.

The maximum K.E. of the photoelectrons emitted by the Zn cathode is
J2nhe
A

On calculating this comes out to be 0:993 eV » 1-0 eV

Since an external decelerating voltage of 1-S V is required to cancel this current, we infer that
a contact potential difference of 1-5-1-0 = 0-5V exists in the circuit whose polarity is
opposite of the decelerating voltage.

Epax

ADI
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5.280 The unit of % is Joule-sec. Since m ¢ is the rest mass energy, 12— has the dimension of time
mc

and multiplying by c we get a quantity
h
X = el

whose dimension is length. This quantity is called reduced compton wavelength.

(The name compton wavelength is traditionally reserved for 2::’ ) .

5.281 We consider the collision in the rest frame of the initial electron. Then the reaction
is
¥ +e(rest) — e (moving )

Energy momentum conservation gives

'ha)-o-mocz = mocz/ Vv 1-62
ho  _mch

c r—_l—Bz

where w is the angular frequency of the photon.

Eliminating & o we get

m0C2 = mOCZ_Ll_ = m°C2 i:'ﬂ
Vi-g?

This gives p = 0 which implies hw = 0.

But a zero energy photon means no photon.

5.282 (a) Compton scattering is the scattering of light by free electrons. (The free electrons are the
electrons whose binding is much smaller than the typical energy transfer to the electrons).
For this reason the increase in wavelength A A is independent of the nature of the scattered
substance.

(b) This is because the effective number of free electrons increases in both cases. With in-
creasing angle of scattering, the energy transfered to electrons increases. With diminishing
atomic number of the substance the binding energy of the electrons decreases.

(c) The presence of a non-displaced component in the scattered radiation is due to scattering
from strongy bound (inner) electrons as well as nuclei. For scattering by these the atom
essentially recoils as a whole and there is very little energy transfer.
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5.283 Let Ay = wavelength of the incident radiation.
Then

wavelength of the radiation scattened at 6, = 60°
=M =MN+277,(1-cos0;) where &, = %
and similarly
M= A+2xK,(1-cos0y)
From the data 6; = 60°, 0, = 120° and
M=k
Thus ('q-l)lo-Znic[l—cosez-n(l-cosel)]

- Znic[l—n+ncosel-cos92]
~cos ©
Hence Ao = 2ni¢[ﬂi°%—1°—'f—3-1]

sin® 0,/2 — m sin® 0,/2
n-1
The expression Ag given in the book contains misprints.

:47:')&,[ ] = 121 pm.

5.284 The wave lengths of the photon has increased by a fraction v so its final wavelength
is

Ar = (24M) N
. . ho
and its energy is 147
The KE. of the compton electron is the energy lost by the photon and is
T-'hw(l- 1 ) -ho—1
l+7m 1+7

5.285 (a) From the Compton formula
N o=2x%k (1-c0s90)+A

2nc 2nc where 2 X, = —.

’
Thus @ A A+2TKR, mc

Substituting the values. we get ' = 224 x 10? rad/sec

(b) The kinetic energy of the scattered electron (in the frame in which the initial electron
was stationary) is simply
T=ho-ho



2rhc 2rhc
A A+2nX,

- 47‘2"'5'7&- - 2nrhc/A
AA+27A) 1+A2n%k,

= 59:5kV

5.286 The wave length of the incident photon is

Then the wavelength of the final photon is

2nc

+2n%k,(1-cosB)

and the energy of the final photon is
2nhe - ho

hao' = 2n
< 1+—(1-cos9)
mc
- - ho = 1442kV
1+2(—‘% sin?(8/2)
mc
5.287 We use the equation A = Ih; = 2’%’1
Then from Compton formula
__211:,'71 = ————zn-h+2nl(1—cos9)
P mc
s0 Lol 2sinter
P p mc
28 me(f1 1
Hence sin” 5 ) (P' P)
_mc(p-p
2pp
or sind -\ 2ep=p) .
2 2pp

Substituting from the data

Sm__‘/mc(cg—c22 _ 4/ 0513 (102 -0255)

2cpcp 2 x 1:02 x 0-255
This gives 8 = 120-2 degrees .

255
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5.288 From the Compton formula

A= Ao+ (1 -cos0)
From conservation of energy
2nhc - 27('hC+T 2nhc
do A Ao+2""(1 ~cos0)
4nh .20 T 4nh .20
or me o 2 Znﬁc)“’()“ﬁ me o° 2)
or introducing hwy = 2xh /A
2 sin’ 9/2 1 smz—
'hooo g c? 2
20 20
LY g Sy ‘3
Hence — | +2 - =0
('h‘”o) hwy mc? mcetT
2 2
.20 .20 .20
1 sin 2 2 sin > sin >
rt—a | = 7.t 2
hwy mc mc'T mc
sin? 2 [
1 2 . 2mc? _1]
hwg mc? Tsin?6/2
mc*/sin® 0/2
or hwy =

Substituting we get

1/ 2
14 2mc” -1

A

hwy = 0677 MeV

.20
Tsm2

2mc?

+
T sin“ 0/2

11

+T
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5.289 We see from the previous problem that the electron gains the maximum K.E. when the photon
is scattered backwards 0 = 180°. Then

m c/h

2
‘\/1+2mc -1
Hence Ao = 21|:c 2::1![\/ 2mc _1]

Substituting the values we get Ag = 3695 pm.

Wg =

5.290 Refer to the diagram. Energy momentum conservation gives

*:’ —%cose = pcos@ (E,P)
-l?cﬂsinﬁ-psintp 9
AN
ho+mc® = ho'+E hw o
where E?=¢? D 2em?ct. we see
1 ha'
@ __w'sin® —):,-smB
n(p—co—co’cosﬂ—_l_ 1 e
AN
_ _Asin® sin 0
T M-Acos® AA 20
» t2siny
where A)\.s)J—)\.-2n)\.c(1-cose)=4n)\.csinzg
2singcos—
Hence tan =——2—2
enc (0} AA.,, X
A 2w,

Ak \/ AN ‘/41:9»:
But smB:ZV 1- 47‘* rry A 1
4nh -1 \/m41t'h -1

b @ mcAA cAM 31.3°
us ney = a= - .
14 2nh 1+_‘h_(g
mch mc2
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5.291 By head on collision we understand that the electron moves on in the direction of the incident

photon after the collision and the photon is scaltered backwards. Then, let us write
hm-nmg

Ao =omc?
(E,p) = (emcz,u.mc)ofthe electron.

Then by energy momentum conservation (cancelling factors of m ¢t and mc)

1+m =0+¢
N=wp-o
82-1+p2
So eliminating o & € 1+ =-n+p+V w41
or (1+2m-p) = Vp2+1
Squaring (1+2n)2—2u(1+2n)=1
4n+4v’ =2u(1+27)
_2n(1+m)
or K 1427
Thus the momentum of the Compton electron is
me 2n(1+m)mc
p=H 1427 ’
Now in a magnetic field p=Bep
Thus p-2n(1+n)/ (1+2n)%’-§-.
Substituting the values p =3412cm.

5.292 This is the inverse of usual compton scattering.
When we write down the energy-momentum conservation
equation for this process we find that they are the same
for the inverse process as they arc for the usual process.
If follows that the formula for compton shift is applicable \ ,
except that the energy (frequeincy) of the photon is \
increased on scattering and the wavelength is shifted
downward. With this understanding, we write

+h
A)»=21t——mc(1—cose) 7_60”
2 \an2® -1
-4n(mc)sm 2" 121 pm

R g% g4 ¢



PART SIX

ATOMIC AND NUCLEAR PHYSICS

In this chapter the formulas in the book are given in the CGS units. Since most students are

familar only with MKS units, we shall do the problems in MKS units. However, where needed,
we shall also write the formulas in the Gaussian units.

6.1 SCATTERING OF PARTICLES. RUTHERFORD-BOHR ATOM

6.1 The Thomson model consists of a uniformly charged nucleus in which the electrons are at
rest at certain equilibrium points (the plum in the pudding model). For the hydrogen nucleus
the charge on the nucleus is +€ while the charge on the electron is -¢. The electron by symmetry
must be at the centre of the nuclear charge where the potential (from problem (3.38a)) is

-(1)3e
P = | 37ne | 2R
where R is the radius of the nucleur charge distribution. The potential energy of the electron

is - e @y and since the electron is at rest, this is also the total energy. To ionize such an
electron will require an energy of £ = e @

. 1 3¢
From this we find R=(4nso)2E
In Gaussian system the factor is missing.
4r L)
Putting the values we get R = 0159 nm .

Light is emitted when the electron vibrates. If we displace the electron slightly inside the
nucleus by giving it a push r in some radial direction and an energy 8 E of oscillation then
since the potential at a distance r in the nucleus is

(ry = ()e(3_ 2
PLr '(4uso)R 2 2R?) .

the total energy of the nucleus becomes

2 2
%mr2-( 1 )%(2 L )--—e(po+6E

4ne 2 2R?
1 1 e 2
or SFE -2—mr +(4’“’30)_2R3r

2
This is the energy of a harmonic oscillator whose frequency is : o’ = (——1——) —e—3
4n € )mR
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The vibrating electron emits radiation of frequency w whose wavelength is

A= 2xc = 2“\/735(4“0)1’2

(V] e

In Gaussian units the factor (4 x gy )2 is missing.

Putting the values we get A = 0237 um.
6.2 Equation (6.1a) of the book reads in MKS units

9192
an 6,2 = (_4::8,,)/2”

9192 | cot8/2
Thus b-(4neo) 2T
For a particle g, = 2e,forgold g, = 79e

(In Gaussian units there is no factor ( 1 ))
4n €g
Substituting we get b=0731pm.

6.3 (a) In the Pb case we shall ignore the recoil of the nucleus both because Pb is quite heavy
(Ap, = 208 = 52 x Ay, ) as well as because Pb in not free. Then for a head on collision,
at the distance of closest approach, the K.E. of the a. — particle must become zero (because
a - particle will turn back at this point). Then

2Z e?
£ =T
( 4n € ) Tmin
(No (4 meg) in Gaussian units.). Thus putting the values
Pmin = 0591 pm.

(b) Here we have to take account of the fact that part of the energy is spent in the recoil of
Li nucleus. Suppose x; = coordinate of the a - particle from some arbitrary point on the
line joining it to the Li nucleus, x, = coordinate of the Li nucleus with respect to the
same point. Then we have the energy momentum equations

2x3é -
(4neg)|x - x|

1 5 1 -
Emle+5m2x§+ T

mlil + M2i2 =YV ZmlT
Here m; = mass of He'" nucleus, m, = mass of Li nucleus. Eliminating x,

' . \2 6 €
VamT-mi) + Gy s m)

N S S
T—2m1x1+2m2(
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We complete the square on the right hand side and rewrite the above equation as

2
m . ‘/ m
2T 1 Vm(m+my)x - m1+1m2V2m1T]

my+m, _2m2

6 &
+
(4meg)[x;-xa]

For the least distance of apporach, the second term on the right must be greatest which implies
that the first term must vanish.

6 e’ my
Thus |x1-x2|min=m(l+m—2)

Using e -
my

RIFN

and other values we get

| %1 = %3 | min = 034 pm .

(In Gaussian units the factor 4 x g is absent).

We shall ignore the recoil of Hg nucleus.

(a) Let A be the point of closest approach to the centre
C,AC = ry, . At A the motion is instantaneously
circular because the radial velocity vanishes. Then if
Vg is the speed of the particle at A, the following equa-

tions hold
2
1. 2 Z 4 €
l“-i—mvo+————————(“nso)rmin 1)
Mmvgrpn =V2mTbhb 2 -}I‘ I
mvﬁ _ 'Zl Zz e2 (3)

Pmin (4neo)r;‘;in
(This is Newton’s law. Here p = p_;, is the radius of curvature of the path at A and p is
minimum at A by symmetry.) Finally we have Eqn. (6.1 a) in the form

Z Z, & 0
‘(4;»:0)221“‘5 )
27T % % €&
Pmin B (4neg)
Z) 2%, e 2 0
Puin = (Greg)2T > 2°
with z; = 2, zy = 80 we get
Pmin = 0231 pm.

b

From (2) and (3)

or
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(b) From (2) and (4) we write
y o E & e wote
" (Ane)VImT Vo

Substituting in (1) = %m vo+V 2mT vytan 6/2

Solving for vy we get vy = \/ %;T— (secg—tan-ze-)

0
‘Zl Zz e2 cot E

Then rm°=(41t£o)2T secg_mng
2 2

Zl 22 82 0 0 0

= (4n80)2TC0t2(SCC2+t3n2)

Zl 'Zz e2
(1 oosee3

5
-(4neo)2T 1 + cosec )-0.557pm.

6.5 By momentum conservation

—> — —» -
P+ P = P + P
(proton) (Au) (proton) (Au)
Thus the momentum transfered t¢ the gold nucleus is clearly

5F w B-F - 7

Although the momentum transfered to the Au nucleus is A
not 'small, the energy associated with this recoil is quite J Y 2\
small and its effect back on the motion of the proton can —> 1

be neglected to a first approximation. Then
- A A
AP w V2mT(1-cosB)i V2mTsin@j
Here i is the unit vector in the direction of the incident proton and ; is normal to it on the
side on which it is scattered. Thus

|AP| = 2V2mT sing

Z é
(4ﬂ€0)2bT

|AP] = 2\/2,,,T/ [1+(Mr ]

Or using tan 6/2 = for the proton we get

Z &

6.6 The proton moving by the electron first accelerates and then decelerates and it not easy to

calculate the energy lost by the proton so energy conservation does not do the trick. Rather
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we must directly calculate the momentum acquire by the electron. By symmetry that
momentum is along OA and its magnitude is

P, -flidt

where F is the component along OA of the force on electron. Thus

2
Pd'f 4:30 r———b .b2+1v212dt
- b? + 1?12

, v A
._€b f dx 1 e
4meyv b2+ )2 |
oF L (FT+X) 16
Evaluate the integral by substituting }
X = bt31129 7,
2e
Then P‘-(4neo)vb'
4
Then P T

<" 2m, B (4::50)2Tb2m¢

In Gaussian units there is no factor (4 x g, )2. Substituting the values we get
T, = 3-82eV.

See the diagram on the next page. In the region where potential is nonzero, the kinetic energy
of the particle is, by energy conservation,
T + Up and the momentum of the particle has the magnitude V 2 m (T + Uy ) . On the boundary

the force is radial, so the tangential component of the momentum does not change :

V2mTsina = V2m(T+U,) sing

) T . sin a. o(,‘b
50 sinQ = v T+T, sin o = — >— S N
| 8]

W' v

Uy
where n = 1+ T We also have

0 =2(a-9)
Therefore

sing = sin(o~@) = sin o cos ¢ - cos o sin @
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. ( cosa)
= sina| cos - —

nsin 0/2 \/2 .2
or —— = Y n°-sin“a -cosa

sin o
2
(nsm6/2 ) 2 .2
or —T+COs QO =n -Sin A
sin o
.20 0
or n2s|n2—00t2a+2nsmgc0ta+1 = n®cos’~
2 2 2
0
ncosE—l
or cota =
nsing-
2
. 0
nsmi-
Hence sina =

2 0
1+n -2ncos2

Finally, the impact parameter is

. 0
nRsm2

Vi —2nco?
1+n 2nv:os2

6.8 It is implied that the ball is toc heavy to recoil.

b = Rsina =

(a) The trajectory of the particle is symmetrical about the
radius vector through the point of impact. It is clear
from the diagram that

0=n-2¢ or ¢ =

Also b=(R+r)sing = (

(b) With b defined above, the fraction of particles scattered between 6 and 6 +d 0 (or the

probability of the same) is
2xbdb sm 0do
n{(R+r ) T2
(c) This is
w2 0

1 . 1 1
P—f —2-sm0d6— 2J‘d(-cos())- >

0 -1
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6.9 From the formula (6.1 b) of the book

2 2
ﬂ_"( Ze )dQ

N (4mey)2T sin‘g-
2
We have put q; = 2e, g, = £ e here. Also n = no. of Pt nuclei in the foil per unit area
N, Ny pt
= (A t P ) _A . l = .i
‘ll Ap A Ap,
mass of J’
the foil "0',°f
nuclei per
unit mass

Using the values Ap, = 195, p = 215 x 10° kg/m’
N, = 6023 x 10% /kilo mole

we get n= 6641 x 107 per m?
as, _s
Also dQ = —- =10""Sr
r
Substituting we get ‘—11%;,- = 336x107°

6.10 A scattered flux density of J (perticles per unit area per second) equals J / %- 7 particles

scattered per unit time per steradian in the given direction. Let n = concentration of the gold
nuclei in the foil. Then
Nyp

n=
AAu

and the number of Au nuclei per unit area of the foil is nd where d = thickness of the foil
Then from Eqn. (6.1 b) (note that n —> nd here )

2
r*J = dN = ndI(——Z-f—————] coseo:42

(4mey)2T 2
Here I is the number of o — particles falling on the foil per second
aT*ry
Hence d = ——— sin 0/2
n I( zé )
4me,

using Z = 79, Ay, = 197, p = 193x 10°kg/m’> N, =6:023 x 10?® / kilo mole and other
data from the problem we get
d=147pm
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6.11 From the formula (6.1 b) of the book, we find
dNp, np, 73,
= e T = 'n

dN,, Mag zﬁg

But since the foils have the same mass thickness ( = pd), we have

e Aag
Ny Ap
see the problem (6.9). Hence
nA4
Zp, = ZAg. '—A"""‘
Pt

Substituting Z,, = 47, A,, = 108, Ap, = 195 and n = 1-52 we get
Zp, = 7786 = 78

6.12 (a) From Eqn. (6.1 b) we get

2
-d- 2 .
AN = 1,72 NA( Ze ) 27sin 0d0

Ay \(4meg)2T ) sin'e/2
(we have used dQ = 2nsin0d0 and N = I)I)
From the data

o 2 .
dO = 2° = 573 radian

Also Z,, =79, Ay, = 197. Putting the values we get
dN = 163 x 10°

(b) This number is

n

2 -
N(8y) = Iyt | B 4Na ze 4nf *27°
07 =00 A |l (4meg)2T <in 8

8y 2
The integral is
1
dx 1[-171 0
~ | =L - 20
Zf x? 2 [2x2] 6, oot 2
. 8, sng
)
zé Y 9
2.0
Thus N(Q)) = und(“neo)T) Iyt cot >

where 7 is the concentration of nuclei in the foil. (n = pN;/A,,)

Substitution gives
N(6p) = 2:02x 10’
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6.13 The requisite probability can be written easily by analogy with (b) of the previous problem.

6.14

6.15

It is
x
2
2
P_Ngn/Z!_nd Ze -] 4x cos 0/2d0
I~ (4meg)2mv . .30
x

Sm‘i'

The integral is unity. Thus’
2

2
[ 7
(4mey)mv

Substitution gives using

o - Parla _ 105x 10° x 6.023 x 10%
Ay 108

, P = -006

Because of the cosec‘g- dependence of the scattering, the number of particles (or fraction)

scattered through 0 < 8, cannot be calculated directly. But we can write this fraction as
P(6)=1-2(6)
where Q (6, ) is the fraction of particles scattered through 8 = 8, . This fraction has been

calculated before and is (see the results of 6.12 (b))
’ 2

2
0(8,) = m(—z-f—) cotZ%‘l

(4neg)T
where 7 here is number of nuclei/cm?. Using the data we get
Q =04
Thus P(06y) = 06

The relevant fraction can be immediately written down (see 6.12 (b)) (Note that the projectiles

are protons)

2
2 0
AN _ (—-—e——) moof’ 2. (mZ+m23)

N (4mey)2T

Here n, (n,) is the number of Z, (Cu ) nuclei per cm? of the foil and Z,(Z,) is the atomic

number of Z, (Cu ). Now

pdN, pdN,
= '7 a=

Ml 0 , Ny Mz
Here M, M, are the mass numbers of Z, and Cu.
Then, substituting the values Z; = 30, Z, = 29, M; = 654, M, = 63-5, we get
AN

- = 143x 1073

=03

"1-
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6.16 From the Rutherford scattering formula
2

ggs( zé ) 1
dQ " | (4me)2T) _ 40

(dnep)2T sin‘g-

or do-(
2

2 2 .
Ze ) 2nxsin0dO

(47e)T sin® 6/2
Then integrating from 0 = 6, to 0 = & we get the required cross section

Ao - ( ) fcosG/ZdO
(4mey) T

sm—-

2 2
-( Ze ) cos0/2d 0

- ( _zeé )2 o2
(4mey)2T 2°
For U nucleus Z = 92 and we get on putting the values
Ao = 737b = 0:737kb.
(1b = 1 bam = 1072 m?).

6.17 (a) From the previous formula

2
zé N
Ao = ((4neo)2T) :v\:cot2~2

zéet 90“/ T
or T-41|:e0t2 Ao

0
Substituting the values with Z = 79 we get (8, = 90°)

T = 0903 MeV
(b) The differential scattering cross section is
do 4 0
a0 = C cosec >
0
where Ac(9>8) =4nCcot2—29-
Thus from the given data
500

C = an b = 3979b/sr
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So g%(e = 60°) = 3979 x 16 b/sr = 0-637 kb/sr .
The formula in MKS units is

dE _ o

dt 6xc

For an electron performing (linear) harmonic vibrations W is in some definite directions with

w, = —w’x say.

dE | _we'e’
dt 6nc

If the radiation loss is small (i.e. if w is not too large), then the motion of the electron is
always close to simple harmonic with slowly decreasing amplitude. Then we can write

Thus

1
E=x~mw*d
2
and X = acoswt

and average the above equation ignoring the variation of a4 in any cycle. Thus we get the

. . 1
equation, on using <> = é—az

dE _ _he€o'l . mee’
dt 6rec 2 6nxmc

. 1 . .
since E = -2—m o a® for a harmonic oscillator.

This equation integrates to
E=Ee "
where T = 6nmc/e2co2p.0.

It is then seen that energy decreases v times in

6tmc

tpb=Thhn = Inn = 147 ns.

& w? Ko
Moving around the nucleus, the electron radiates and its energy decreases. This means that
the electron gets nearer the nucleus. By the statement of the problem we can assume that the

electron is always moving in a circular orbit and the radial acceleration by Newton’s law is

e2

W =
(dmey)m 5
directed inwards. Thus

dE _ e’ 1
dt 6nc (4::130)2m2r4
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6.20

On the other hand in a circular orbit
2

e
E= -
(d4mey)2r
SO .—i.__.d_’:- - u0e6
(4mey)2r% dt (4neg)’ 6ncm rt
4
or _d_r_ - o
dt (4ney)3ncm?r?
Integrating
4
e
4 n° ggcm
and the radius falls to zero in
43!2806"12)%
fp= —— —sec. = 13-1ps.

Ko e
In a circular orbit we have the following formula
mv? - Zé
r (d4mep) r

mvr =nh
v Zé?
(dney)nh

R h(4me)

Then

Z npé

2
The energy E is E, = -;—mv2—z-;‘—i—z-oTr-

2 \2 2 \2 2 \2
_ | Ze m_(Ze m__ Ze / 292 n?
dnmey | 29202 |dmey | 12 n? 4neg
and the circular frequency of this orbit is

zé& Y
(x),,==-}=( £ ).m/'han3

4 ey

On the other hand the frequency w of the light emitted when the electron makes a transition

) \2
» = Ze \ m (1 1
dney | 292 | 2 (n+1)?

n+l1—>nis
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Thus the inequality

will result if

1 1 o1
¥ (n+1)? (n+1)3
Or multiplying by #* (n +1)? we have to prove

2 2
M>l(2n+1)> n
n 2 n+1

This can be written as

n+2 + l>n+~1—>n-a-1-2+ 1
n 2 n+1

1 .
<-—since n 21

This is obvious because - 1 + - 1

+1 2
For large n
3
O _(n+l -1+
Wy 41 n
so P —1 and we may say 0—(;)-—*1

Wy yy n

We have the following equation (we ignore reduced mass effects)

— =kr
r

mvr =nh

so mv =Vmkr

and r= nh_,
V N

mk

and v-Vn'h\/_n—z-I/m'

The energy levels are E, = %mv2+%kr2
1nhyV mk+_1_k nh
2 m T2

271
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6.22 The basic equations have been derived in the problem (6.20). We rewrite them here and
determine the the required values.

#?
@ rn=———————,Z=1for H,Z=2 for He'
m(Ze/4mey)
Thus ry = 528 pm, for Hatom
ry = 26:4pm, for He' ion
ve = zé
" (4neg)h

vy = 21191 x 10° m/s for H atom
= 4382 x 10° m/s for He" ion

1 5 m(Zez)2
b T-—mv =
®) 271 (dmey )2t

T = 1365 ¢V for H atom
T = 54-6eV for He' ion

In both cases E,= T because E,= —E and E= - T (Recall that for coulomb force

V==-2T)
(c) The ionization potential @; is given by
eq; = E,
so @; = 13-65 volts for H atom
@; = 546 volts for He* ion
Th 13-65
e energy levels are E, = - 7 eV for H atom
and E,=- 5—4ééev for He" ion
n

Thus @ = 1365|1 —:11- volts = 10-23 voits for H atom

@, = 4x1023 = 409 volts for He* ion
The wavelength of the resonance line
(n =2—>n =1)is given by

2nhce _ 136 . 136
A 4 1
) A = 1212 nm for H atom

For He* ion A= 12‘% = 30-3nm.

= 1023 eV for H atom




6.23

This has been calculated before in problem (6.20). It is
m(Ze/4mey)
o = _L.hss_o) = 2:08 x 10'® rad/sec
n

6.24 An electron moving in a circle with a time period T constitutes a current

6.25

e
I'T

and forms a current loop of area = r%. This is equivalent to magnetic moment,

2
_ 2 _enr. _evr
n=Inr T N

on using v = 2xr/T. Thus

emvr neh

" 2m 2m

for the n™ orbit. (In Gaussian units

W, = neh/2mc)

We see that
e
W, = .Z_MM"
where M, = nh = mvr is the angular momentum
Wr e
Th — = T
e M, 2m
L = 927 x 16~ * Am®
u = Zm = Up
(In CGS units u; = pp = 927 x 10! erg/gauss)
The revolving electron is equivalent to a circular current
[=¢. € _.¢Y
T 2nr/v 2mr
The magnetic induction
2
MLI_HoeV__M_o_.e. & . m e’
2r  4mr? 4nm (dmeg)h |17 (dne,)
pom-e’
256 7t 5(3)71 >

Substitution gives B = 12-56 T at the centre.
(In Gaussian units
m

27
B = ™% = 1256kG.
ch

273
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6.26 From the general formula for the transition n, — n,

1 1

ho = Ey|l 5-=
iy
where E,; = 13-65eV. Then

(1) Lyman, n; = 1, ny, = 2, 3. Thus
ho= %E,, - 10238 eV

2xch
T o

and Lyman lines have A s 0-121 p m with the series limit at ‘0309 p m

This corresponds to A = = 0121 um

(2) Balmer:n, = 2, n; = 3,4,
1 1 5
o=z EH(Z-E) - ggEH = 1-876 eV

This corresponds to

A =065um
and Balmer series has A < 0-65 p m with the series limit at A = 0-363 um.
(3) Paschen :n, = 3, nl:- 4,5, ...

1 1 7
hoz EH(§—1—6) = mEH = 0:6635 eV

This corresponds to A= 1869 um
with the series limit at A = 0-818 um

P
p B
T ——
owm  qum W 10.4m

6.27 The Balmer line of wavelength 486-1 nm is due to the transition 4 — 2 while the Balmer
line of wavelingth 410-2 nm is due to the transition 6 — 2. The line whose wave number
corresponds to the difference in wave numbers of these two lines is due to the transition
6 — 4. That line belongs to the Brackett series. The wavelength of this line is

A
A= —b o 1M=2-627p.m

T 1 N-h
M
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6.28 The energies are

11 5 1 3
E”(4'9) 36E”’E”(4 16) 16 2#

1
Eu ( 4725 ) 100 00 5
They correspond to wavelengths
6542nm, 4846 nm and 433 nm
The n™ line of the Balmer series has the energy

1 1
EH(4—(n+2)2)

For n = 19, we get the wavelength 366-7450 nm
For n = 20 we get the wavelength 366+ 4470 nm
To resolve these lines we require a resolving power of

A 3666 3
R~ = 02 = 123x10

6.29 For the Balmer series

A,
or 2n‘hc_2n'hc=_hR _1_2_ 1 .
Mt M, n (n+1)
=7R #1—2 =z‘§'forn>>1
n(n+1) n
Thus 2“:” axemj'
. n
A, ahen® men’
or =~ =

3N MRM MR
On the other hand for just resolution in a diffraction grating

A l 1 l l .
8— kN kd ﬁkk—mdsme i—sme
3
. wcn
Hence sin@ = TR

Substitution gives 0 = 59-4°.
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6.30

6.31

6.32

6.33

If all wavelengths are four times shorter but otherwise similar to the hydrogen atom spectrum
then the energy levels of the given atom must be four times greater.

4E,
This means E, = -_2"
n

E,

compared to E, = —-—'; for hydrogen atom. Therefore the spectrum is that of He' ion
n

Z=2).

Because of cascading all possible transitions are seen. Thus we look for the number of ways
in which we can select upper and lower levels. The number of ways we can do this is

%n(n-l)

where the factor 1 takes account of the fact that the photon emission always arises from

2

upper — lower transition.

These are the Lyman lines

ﬁm-&{%~%)n-2&4m
For n=2 wegeA=121-1nm
For n =3 we getA=1022nm
For n=4 we getA=969nm
For n=35 wegetA=94-64nm
For n=6 wegetd=9345nm

Thus at the level of accuracy of our calculation, there are four lines
121'1inm, 1022nm, 969nm and 9464nm.

If the wavelengths are A, , A, then the total energy of the excited start must be

2n c'h 2xch

E = El + — A.l )vz

4Ey N
But E; = —4E, and E, = - —— where we are ignoring reduced mass effects.

n
4Ey 2mch 2nch

Then 4E, = + +

oo M A
Substituting the values we get n? = 23

which we take to mean n = 5. (The result is sensitive to the values of the various quantities
and small differences get multiplied because difference of two large quantities is involved :

2 Ey

n-E_nc'h _1_'
H™ 9 xl A
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6.34 For the longest wavelength (first) line of the Balmer series we have on using the

6.35

6.36

generalized Balmer formula

nom
2xnc 8nc
the result M Lyman = 2
2R ( 1- 1) 3Z°R
4
176 n c
Then AN = A\ pama— A - —
1 Balmar 1 Lyman 15 Z2R
so - -EE-Z—& = 2:07 x 10 sec !
15Z°A M
From the formula of the previous problem
_176xnc
15Z°R

or Z =1 / 176 xc
1SRAA
Substitution of AA = 59-3nm and R and the previous problem gives Z = 3

This identifies the ion as Li*™*

We start from the generalized Balmer formula

1 1
o =RZ=-=
(nz mz)
Here m=n+l,n+2,..®

The interval between extreme lines of this series (series n) is

Aw = RZZ(-I—z--( 1 )-RZz(—l—-—l—j) =RZ/(n+1)?
n (o +

Hence n==2 — -1

Then the angular frequency of the first line of this series (series n)-is
2

re(L_—L . n+l) _
wl-RZ(nz (n+1)2)-Am(( n )
2

—
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6.37

6.38

6.39

Then the wavelength will be

2
V&
2nc_21cc (Z Aw 1)
o, Aw
22V R 4

Aow

Substitution (with the value of R from problem 6.34 which is also the correct value determined
directly) gives

Z.l-

A’l = 0'468[1!\1
For the third line of of Balmer series
0= Rzz(é-;—z) Y

100

2rc 200=mc

Hence A= -
o 21RZ

or Z.\/?'_.ng_ﬁ
21R A

Substitution gives Z = 2. Hence the binding energy of the electron in the ground state of this
ion is

E, = 4Ey = 4% 1365 = 54-6eV
The ion is He".
To remove one electron requires 24-6 eV.
The ion that is left is He* which in its ground start has a binding energy of 4 E; = 4% R.
The complete binding energy of both electrons is then

E = Ey+4hR
Substitution gives E = 791eV
By conservation of energy
1 2 2xhe
-2- mv = 7N - Eb

where E, = 4%R is the binding energy of the electron in the ground state of He’. (Recoil
of He"™ nucleus is neglected). Then

. -‘/%(2"7"-5,,)

A
Substitution gives
v = 225x10°m/s
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6.40 Photon can be emitted in H - H collision only if one of the H is excited to an n = 2 state

6.41

which then dexcites to n = 1 state by emitting a photon. Let v; and v, be the velocities of

the two Hydrogen atoms after the collision and M their masses. Then, energy momentum
conservation

Mv,+Mv, =V2MT

(in the frame of the stationary H atom)

Lyvziipre2,3
2Mv1+2Mv2+4‘hR T
%ﬁR =hR ( 1- ‘1‘—) is the excitation energy of the n = 2 state from the ground state.

2

Eliminating v, lM[V%-f(V 2—1-'--v1) ]+%‘hR-T

2 M

U P VET SN ¥ J O
or 2M{2v1 2 Mv1+Ml+4'hR T

2
14/ 2T 1 3
M \v1—2 M] ]+2T+4‘hR-T
14/ 2T 3 1

or M [vl-2 M] +4‘hR-2T

For minimum 7, the square on the left should vanish. Thus T = %‘hR = 204 eV

In the rest frame of the original excited nucleus we have the equations O = E; +Drr

%‘hR - c| B+ P22 M

(%‘hR is the energy available in # = 2 — = 1 transition corresponding to the first Lyman line.)
3hRM

Then pf,+2\‘1tlcp,,- > - 0
or (py+Mc)* = M2c2+%‘hRM
12
2 2.3 3hR 3hR
Pu= -Mc+VM c +2'hRM —Mc+Mc(1+ Mcz) Ly
(We could have written this directly by noting that pf,/ZM <<cp,.) Then

3hR

VH = Z—M-—C_ = 33m/s
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6.42 We have
2

€ =%71R and €' = 'hR ~hR/c )

za

Then e-g _ 3'hR2 - H _55x107° = 0-55x 105 %
€ 8Mc*  2c

6.43 We neglect recoil effects. The energy of the first Lyman line photon emitted by He" is
4113(1-%) - 3%R
The velocity v of the photoelectron that this photon liberates is given by

3R = %mvzmx

where # R on the right is the binding energy of the n = 1 electron in H atom. Thus

v=V 2R _, "‘: 31 x 10° m/s

m
Here m is the mass of the electron.

6.44 Since AA(= 020nm ) <<A (= 121 nm) of the first Lyman line of H atom, we need not
worry about v2/c? effects. Then

@ = —2 ﬁ-!
1-BcosO’
Hence 1- Bcose-—“—)-al’
® A
NoOAA
or BcosB =1 X<
2rnc _ 8=mc
But p IR
3RAM
Hence v-cﬁ-sﬂcose

Substitution gives (cos 0= -1—)

V2
v = 70x10° m/s

6.45 (a) If we measure energy from the bottom of the well, then V(x) = 0 inside the walls. Then

the quantization conditon readsﬁ pdx =2lp =2nnh

orp = inh/l
P o n’h
Hence E,' = 2—m - m .
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f pdx=21p because we have to consider the integral form -—é— to % and then back

m—%)

(b) Herefpdx= 2nrp=2nnh

or P - le
r
242
Hence E, = nh
2mr?
2
(c) By energy conservation iLm -;-ax = F

S0 p=YV 2mE -mao.x*
Thenfpdx =§ VomE-max® dx

V2E
[0 ]

Y f VE_ 2 i
VzE

(0

y %2
The integral is f Vdi-x?dx = azf cos’0d 0
-a -x/2

2
e - 2 X
= 2f(1+cos29)d0 a 2"

Thus fpdx-u\/mu-%-‘Edﬂ:-v-'g =2nnh

Hence E, = nh 2,
m

(b) It is requined to find the energy levels of the circular orbait for the rotential
. o
U ( r r) - 7
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In a circular orbit, the particle only has tangential velocity and the quantization condition

readsf pdx =mv-2xar =2nanh

SO mvr =M =nh

The energy of the particle is

o«
E = 5=
2mre T
Equilibrium requires that the energy as a function of r be minimum. Thus
1« n’ 1’
3y = orr= .
mr r mao
ma’
Hence E, = - .
" 2tk
6.46 The total energy of the H-atom in an arbitrary frame is
2
e

) R
E-ym¥ MV - Gre) -7

— . - .
Here V, = ?f, V, = r—;, r& ;; are the coordinates of the electron and protons.

We define
F mri+Mr,
T M+m
- —> —>
r=ri-r
— —
Th ‘—/> m Vl +M Vz
en T m+M
V= V-V,
-2 g M
or Vi=Vs meM®
g - m -
V. -
2=V m+M
1 3 1 mM ; &
d t == = -
and we ge E 2(m~|-M)V Yt Ameqr
—
In the frame V = 0, this reduces to the energy of a particle of mass
_mM
™y v
u is called the reduced mass.
4 4
Then E,=%% and R=YE5
2 2T
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Since n= n -m(l—ﬂ)
1+2 M
M

these values differ by 1-‘—";-( « 0:54 %) from the values obtained without considering nuclear

motion. (M = 1837m)
6.47 The difference between the binding energies is

AE, = E,(D)-E,(H)

m e m e
"hm T [ m oW
1+— + m
_me(m
292\ 2M
Substitution gives A E, = 3-7meV.
For the first line of the Lyman series
i2xhe 1 1 3
X -11R(1—4) = =hR
or A= 8nc 8mhc
3R  3E,
Hence
Y 8 xhc 1 1
o 3 |E(H) Ey(D)
-1
_ 8xhe me' 14
3 2},2 M 2M
_ . 8xhc m_
3(m et 2M
2%
m
“amM
(where A, is the wavelength of the first line of Lyman series without considering nuclear
motion).

Substitution gives (see 6.21 for A;) using A; = 121 nm
Ah=33pm
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6.48 (a) In the mesonic system, the reduced mass of the system is related to the masses of the
meson (m, ) and proton (m,) by

u=—2"_ _ 18604m,

my +M,
Then,
2
separation between the particles in the ground state = —
ne
.
186 o2
= 0284 pm

4
E, (meson ) = 1211% = 186 x 13-65 eV

= 2:54 keV
8nthc A, (Hydrogen )
M o= 3E, (meson) - 186 = 0-65nm

(on using A; (Hydrogen) = 121 nm).

(b) In the positronium

Thus separation between the particles is the ground state

72

=2 )
m,e

= 105-8 pm

4
LA %E,,(H) - 68cV

E, ( positronium ) = 35 . .2?

A\; ( positronium ) = 2 A, (Hydrogen ) = 0-243 nm
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6.2 WAVE PROPERTIES OF PARTICLES.

SCHRODINGER EQUATION

6.49 The kinetic energy is nonrelativistic in all three cases. Now

6.50

6.51

_27%h _ _27h
p 2mT
using T = 1-602 x 10~ Joules, we get
Ae = 122:6 pm
A, = 2:86 pm

A

Ay = » o185 pm.
V238

(where we have used a mass number of 238 for the U nucleus).

From )‘_Zn'h_ 2nh
p 2mT
2,2 2
we find 1-4’”'2=2"212'
2m\ m\
242
Thus Tz'T1=2:n-h lz‘iz
NN

Substitution gives AT = 451 eV = 0-451 keV.

We shall use My = 2 M, . The CM is moving with velocity

V2M, T /2T
M, VYV 9M,

with respect to the Lab frame. In the CM frame the velocity of neutron is
vomvav = V2L _\[ZL _\[ZL .2
" n M, IM, M, 3

2nh 3nh

M.Vs VoM, T

V =

and N,

Substitution gives A/, = 8:6 pm

Since the momenta are equal in the CM frame the de Broglie wavelengths will also be equal.
If we do not assume M, = 2 M, we shall get

_ 2ah(1+M,/M,;)

) 2M, T

’
n
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6.52 If p;, p; are the momenta of the two particles then their momenta in the CM frame will be
- —> . . .
+ (p; ~p;)/2 as the particle are identical.

Hence their de Broglie wavelength will be
% - 2xh _ _4nh

— -

5| Pi-p2| Vpi+p}
2 - 2M M

i R i \/ )\,% + )\%

MOA
6.53 In thermodynamic equilibrium, Maxwell’s velocity distribution law holds :

2
dN(v) = ®(v)dv = AvZe ™V 2kT gy

® (v ) is maximum when

(because p; Lp,;)

/ 2_mvil
P'(v)=P(v) [v T ] 0.
The difines the most probable velocity.
N 2kT
Vor = 282

The de Broglie wavelength of H molecules with the most probable velocity is

)““21t'h‘= 2nh
MmMVpr  N2mkT

Substituting the appropriate value especially

m=my =2my, T =300K, we get
A= 126 pm
6.54 To find the most probable de Broglie wavelength of a gas in thermodynamic equilibrium we

determine the distribution is A corresponding to Maxwellian velocity distribution.
It is given by

Y(A)dAh = =@ (v)dv

(where - sign takes account of the fact that A decreaes as v increases). Now

2nh 2nh
or v =
mA

A=

dv = -2 45

ma?

2 v
Thus W(r) +Av2e'""’/2“(—é—v)

d\



6.55

2

_A(zam) ( w)e T (on)

mA\ mlz

= Const-A"%e -an’
where -2“21'2
mkT

This is maximum when

W(r) =0 = w(x)[-—-+2—3]

or Ar =Vas2 = ah [VmkT
Using the result of the previous problem it is
126
A, = — pm = 891 pm.
T oV2

For a relativistic particle
T+mc* = total energy = V c2p2+m2c4
Squaring
' T(T+2mc2) =Ccp
2nhc

VT(T+2mc?)

2xh

\/m(“m)

Hence A=

If we use nonrelativistic formula,

A 2nh
NR -
v2mT
SO M = )‘NR—A - T
A AR amc?
-12
IfT/2mc2<<1,wecanwrite 1+ T2 =1- T
2mc 4dmc
2
Thus T = iﬂ;—é—&it‘ the error is less than A A

For electron the error is not more than 1 % if

287
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6.56

6.57

T s 4x 0511 x -01 MeV
< 20-4keV
For a proton, the error is not more than 1 % if
T < 4x 938 x 0-01 MeV
ie. T s 37-5MeV.

The de Broglie wavelength is
2nh
Mg = ol = 2nth V1-v¥eé
Vi-v¥? MY

and the Compton wavelength is

2nh

A =
myc

The two are equal if § = V 1-p2 | where B -%

1
or g =—
V2
The corresponding kinetic energy is

T = —-ﬂi— —moc2 = (\/3—1)m0c2

Vi-p?
Here my is th rest mass of the particle (here an electron).

For relativistic electrons, the formula for the short wavelength limit of X - rays will be

2“-"‘:.”;0c2(—1 -1]- Vp2+m2¢:2—mc2
\/1 2

)\':ll

or (2—— )-p+mc
A

: (-

mc)\,,,
or A

-‘/ A
Hence y WY k_,,,/ i “" = 329 pm

1+



6.58 The first minimum in a Fraunhofer diffraction is given by (b is the width of the slit)

6.59

6.60

bsin® = A
Here sinD = —AX2 _ Ax
2, (Ax
1 +( ) )
Thus m_begZ:rh
21 mv
) V= Axhl =202 x 10°m/s
mbAx
From the Young slit formula
Ax JIA 1 27
d d Vomev
Substitution gives
Ax =490 um.
From Bragg’s law, for the first case
2nh
2dsin® = nygA = nyg ———
Vv 2meVo
where ng is an unknown integer. ‘For the next higher voltage
2nh
2dsin® = (ng+1)——
V2menV,
ny+1
Thus ny =
\£)
or ny 1_..1_ - ..l_. or nO = 1
Vn) Vn Vi -1
Going back we get
2542
Vo — 1 L - 0150kev

0% Sy medsin®0 (ﬁ—l)

289

Note :- In the Bragg’s formula, 0 is the glancing angle and not the angle of incidence. We
have obtained correct result by taking 0 to be the glancing angle. If 0 is the angle of incidence,
then the glancing angle will be 90 — 0. Then the final answer will be smaller by a factor

Tt
tan“ O 3
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6.61

6.62

6.63

Path difference is

d+doosB=2dcos2-g-.

Thus for reflection maximum of the £¥* order

2dcos?d = k) = k—2E0

2 2mT

kxh
2mT
Substitution with k = 4 gives

Hence d =

28
Sec X

d = 0232nm

See the analogous problem with X - rays (5.156)
The glancing angle is obtained from

D
tan20-21

where D = diameter of the ring, I = distance from the foil to the screen.

Then for the third order Bragg reflection

2dsin® = kA = k—22 (k= 3)

v2mT

Thus d=—28k ___ 4232mm

V2mTsin®

Inside the metal, there is a negative potential energy of —e V; . (This potential energy prevents
electrons from leaking out and can be measured in photoelectric effect etc.) An electron whose
KE. is eV outside the metal will find its K.E. increased to e (V + V;) in the metal. Then

(a) de Broglic wavelength in the metal
2nh

- M = ———
V2me(V+V;)
Also de Broglie wavelength in vacuum

2nh
V2mVe

L Mo Vi
Hence refractive index n = 7..' - 1+ v

.‘/ 1 -
n= 1+10 =105

Substituting we get
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® n-1-= V 1+E -1s1

| 4
V.
then 1+— s (1+7q)°
\4
or V;sn(2+m)V
or y, 1
Vi m(2+m)
For n=1% =001
\4
we get V. 2 50
6.64 The energy inside the well is all kinetic if energy is measured from the value inside.
We require
l=nk\2=n nh
2mE
2 2
or E,,-gnz.hz,n-l,Z,...
2ml

6.65 The Bohr condition

fpdx =f % dx =2nnh

For the case when A is constant (for example in circular orbits) this means
2xr =nh

Here r is the radius of the circular orbit.

6.66 From the uncertainty principle (Eqn. (6.2b))

AxAp, >
Thus Ap, =mAv >l

X X~ Ax
or Av"?mAx

For an electron this means an uncertainty in velocity of 116 m/s if Ax = 10°°m =1pm
For a proton
Avg = 6:3cm/s
For a ball
Av, = 1x10 P cm/s
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6.67 As in the previous problem

S
ml
The actual velocity v, has been calculated in problem 6.21. It is

Av S =116 x10°m/s

v; = 221 x105m/s
Thus Av _ v, (They are of the same order of magnitude)

27h 1

668 IfAx = A/2x =
2n

A
p mv

Thus Av? mAx

Thus A v is of the same order as v.

6.69 Initial uncertainty Av S ;-h; . With this incertainty the wave train will spread out to a distance

1 ! long in time

2
o~ T]l/ % -~ n’_;:—lsec. = 86x10%sec. _ 10 Psec.

6.70 Clearly Ax <! so Ap; 2 ?l‘

1
Now p, 2 Ap, and so
T pz 2 —7%2
2m  2mi
2
Thus Tpin = L 5 = 095eV.
2ml

6.71 The momentum the electron is Ap, = V2mT
Uncertainty in its momentum is

Ap, 2 h[Ax =T/

Hence relative uncertainty

Substitution gives



6.72

6.73

6.74

By uncertainty principle, the uncertainty in momentum
Ap 31'7

For the ground state, we expect Ap _ p so

2
~2mi?
The force excerted on the wall can be obtained most simply from
2
Fa_ 2U_ 32
al  mi
We write
T h
p.Ap ~Ax ~ x

i.e. all four quantities are of the same order of magnitude. Then

2
E =

2mx X

Thus we get an equilibrium situation (E = minimum) when

‘\/ h
X = Xg = —

Vmk

and then E=E0~‘hv’—1:,--‘hm

Quantum mechanics gives

Eo =hw/2

Hence we write
r _Ar,p_Ap WAr

.h2 e2
Then E = -—
. 2mr? T
212 4
-1 (h _me) me
2m\r A 292

~
4

Hence rg = :ez = 53 pm for the equilibrium state.

4
and then E--Ln-%s—l3~6eV.
2%h

2
2+lkx2=-l—(.h mGx) +1¢V—k—
2 2m m

293
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6.75

6.76

Suppose the width of the slit (its extension along the y- axis) is 8. Then each electron has
an uncertainty Ay _ 8. This translates to an uncertainty Ap, _7%/8. We must therefore have

py > h/4.

For the image, brodening has two sources.
‘We write
A(d) =d+A'(9)
where A’ is the width caused by the spreading of electrons due to their transverse momentum.
We have

Thus A(d) =d+

For large ,A(d) _ 6 and quantum effect is unimportant. For small d, quantum effects are
large. But A (d) is minimum when

sV
mv
as we see by completing the square. Substitution gives
& = 1025x 10 °m ~ 0:01 mm

The Schrodinger equation in one dimension for a free particle is

2 2
PR A
at 2m 90X

i

we write Yy (x,t) = @ (x) % (t). Then

. 2
thdy ¥ 1de o
x dt 2mo 4y

Then x(t) _exp (—!—I’?‘)

p(x) _expli e

E must be real and positive if @ (x) is to be bounded everywhere. Then

Y(x,t) = Const exp(_hi(\/ 2mE x—Et))

This particular solution describes plane waves.



6.77 We look for the solution of Schrodinger eqn. with
-;—;f—;g-Ew,Osxsl (6))
The boundary condition of impenetrable walls means
Y(x) =0forx =0and x =/
(as P(x) =0 forx <0 and x> [,)
The solution of (1) is

. V2mE V2mE
Y(x) = Asin 7 x4 B cos 7 -x

Then Y(0)=0=B=0
w(z)-o=>.4sin-—27"'£1-o
A = 0so
2m£l=nn
h
2 242
Hence E”_nu'Z"; ,m=12 3
2ml
Thus the ground state wave function is
w(x) = Asin X,

l
We evaluate A by nomalization

1 x

1 -Azfsinzﬁ dx -A’Lfsmzede a2tz
) L)1 A nt 2
0

Thus A-V%
21,

Finally, the probability P for the particle to lie in % sxs Jis

213

! 20y 2 emx
P-P(3sxss)-lfsm ] dx

1
3
2x/3 2%/3

= -Zf sin0d0 = -l—f (1-cos20)d6
4 Tt
n/3

x/3
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2x/3
1 . 1(2n = 1 .4x 1 . 2=
= ”(G—Zsmze)m - ( 3 "3 —2sm 3 + =sin 3 )
1(zx 1V3 1V3) 1 V3
-x(3+2 2 +2 2 )-31- u-0609

6.78 Here —-;— sxs -é- Again we have

Y(x) = Boos—-_h—-+Asill——_"—

Then the boundary condition ( x L) =0

2
ves B V2mE |l AiVZmEI-O
gi cos ——o— = Asin—o—
There are two cases.
V2mE I n
1) A=0, o STt

gives even solution. Here

VZmE =(2n+1)ﬂ

2,2
and E, -(2n+1)2u-hl
e -‘/2 nx
Yr(x) = 7 cos(2n+1)—l—
n=0123...
This solution is even under x = - x.
2) B=0,
Y2mELl o 12
2'h ’ L Bt B
2
E, -(2nnf *

P2 = ‘\/—%- sin 2";” , n =1,2 ... This solution is odd.

6.79 The wave function is given in 6.77. We see that

n'nx

f‘pn(x)‘pu (x)dx '_fSln”nx i de
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1
%f [oos(n n)——cos(n+n)— dx
0
1
sm(n+n’)H
_1 sin(n—n’):tx/l l e
! (n-n)Z (n+n )X
l )
0
If n= ', this is zero as nand n’ are integers.
6.80 We have found that
E - 27!’.2"12
"o2ml?

Let N(E) = number of states upto E. This number is n. The number of states upto
E+dEisN(E+dE) = N(E)+dN(E).ThendN(E) = 1 and
dN(E) .
dE AE
where AE = difference in energies between the n* & (n+1 )"' level

- (n+1)*-n? P = 2n+1n2‘h2

2ml 2ml
2
= “21122’71, (neglecting 1 <<n)
2ml
h? 2m12\/—'
- 2
2mi2 | P
Eh N2
l m
dN(E l m
Thus de "~ an YV 2E-

For the given case this gives Q%El = 0-816 x 10 levels per eV

6.81 (a) Here the schrodinger equation is
712 82
( o’ ay

we take the origin at one of the corners of the rectangle where the particle can lie. Then
the wave function must vanish for
x=0 or x =1

}W Evy



298
or y=0 ory=15.
we look for a solution in the form
Y = Asink; xsink,y
cosines are not permitted by the boundary condition. Then

n;wn 11
k = —, = Ny —
1 ll kQ 2 12

’é 7 - 2112("1 "%]

and E = 2m -P--)--l—z-

Here n,, n, are nonzero integers.

(b) Ifll = 12 = | then

E "%"'"%nz
H/ml? 2

1* level : ng=n,=1-—>a" =987
2™ Jevel : n=1n =2 5 5

or n1=2,n2=1}—’5’t'24'7
3* level : =2 =n=2->4n" = 395
4™ level : n=1mn=3

m-3,n2-1}"5"2’49'3

6.82 The wave function for the ground state is

Yu(x,y) 'ASinlt;x‘SinibX

we find A by normalization

- A2 xx 2%y ,2ab
1 Afdxfdysm sin b 2

2
Vab'

Thus A=

Then the requisite probability is

A 2 EX 2 Y
p {dx[dya.b51n il

= % f dx sin’n—:- on doing the y integral
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s sin 2
_lf —cos2®x) _l]e_ __ 3
T a Od(l cos a ) “al3 2n/a
= l-—@ = 0196 = 196 %.

3 4=

6.83 We proceed axactly as in (6.81). The wave function is chosen in the form
Y(x,y,z) = A sink, xsink,ysink; z.
(The origin is at one corner of the box and the axes of coordinates are along the edges.) The
boundary conditions are that ¢ = 0 for
x=0,x=a,y=0,y=a2=0,2z=a
This gives
mn mn nyx

R

The energy eigenvalues are
2

mh
E(nla ’12’"3)= 2("?"'”3"'”3)
2ma

The first level is (1, 1, 1). The second has (1, 1, 2), (1, 2, 1) & (2, 1, 1). The third level is
(1, 2, 2)or (2, 1, 2) or (2, 2, 1). Its energy is

9 n2h?
2m a§
The fourth energy level is (1, 1, 3) or (1, 3, 1) or (3, 1, 1)
1 2%
Its energy is E = .
hed 2m a
(b) Thus
2
A=E-E;= 7—’—’%
ma

(c) The fifth level is (2, 2, 2). The sixth level is (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3,
1,2),(3,2,1)
Its energy is
TH 7
m a*

and its degree of degeneracy is 6 (six).
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6.34

6.85

We can for definiteness assume that the discontinuity occurs at the point x = 0. Now the
schrodinger equation is

2
_22;%+U(x)w(x) = Ey(x)

We integrate this equation around x =0 i.e., from x = — ¢; to x = + &, where &,, €, are small
positive numbers. Then

+e,
+e;
2
_;"_m %dx -I(E—U(x)w(x)dx
€
or (%)%-(%) -2 [E-ven v

Since the potential and the energy E are finite and ¢ (x) is bounded by assumption, the
integral on the right exists and —>0 as g, &, —>0

v) _(4y
Thus (dx Ix as g, gg —>0
-052 —!1
So x| 5 continuous at x = 0 (the point where U (x ) has a finite jump discontinuity.)
7/
7
7
/] Y
7/ R |
7 T
7 £ x=(
7TTTT7 77777777 —>X
(a) Starting from the Schrodinger equation in the regions / & II
P 2mE
+ =0 xin/ 1
ae Y @
&y 2mE(Uy-E)
- =0 xin Il 2
dx? # v @
where Uy > E >0, we easily derive the solutions in I & II
W;(x) = Asinkx+Bcoskx 3

Y,(x)=Ce®*+De™ " 4
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2 U,-E

where ¥ = Z;E , a? = —m(-h+).
The boundary conditions are

(o) =0 )
and ¥ & (%) are continuous at x = /, and ¥ must vanish at x = + oo,
Then Y, = Asinkx
and ‘I‘” = D e-ax
50 Asinkl = De™ %!

kAcoskl = -aDe'“’
From this we get

tankl = —E
o
or sinkl = = kI VEIP+o?1?
ekt V2mGl
7‘2
=+ kIV#/2mU,I? (6)

Plotting the left and right sides of this equation we can find the points at which the straight
lines cross the sine curve. The roots of the equation corresponding to the eigen values of
encrgy E; and found from the inter section points ( k/);, for which tan (k/); <0 (i.c. ™M &

4™ and other even quadrants). It i¢ seen that bound states do not always exXist. For the first
bound state to appear (refer to the line (b) above)

T
(kl)l,mm = E



302

6.86 U, = (%n) n_

(b) Substituting, we get ? Ud)imin =

w2
8m

as the condition for the appearance of the first bound state. The second bound state will
appear when k! is in the fourth quadrant. The magnitude of the slope of the straight line

must then be less than
1

3n/2

Corresponding to  (kl); min = —3—21‘- = (3)-72E = (2x2- l)g-

For n bound states, it is easy to convince one self that the slope of the appropriate straight
line (upper or lower) must be less than

(K min = @n-1)F

n-1> 2R

Then (PUDn min = 5

Do not forget to note that for large n both + and - signs in the Eq. (6) contribute to
solutions.

2,2
2 _(3_\ B
El (4") 2m

kl-%n

It is easy to check that the condition of the boud state is satisfied. Also

2m mU 3
al = —117(110-5)12 -V —1;2—"12 =in

4

Then from the previous problem

3n/4

D=Ae%sinkl =A%

V2

By normalization

@
1

I=A% fsinzkxdx+fe

0 1

3V Gy
el ¥ x




1
3x
=A2 %f(l-coska)dfo %e' 27dy
0

:

I 1 1
2| L[ _sin2kl] 1 3n| .2,1|, 3x| 13n
Az[ 2k]+22 AT+ 145 5

1,2]_ 42L(,, 4 2 (,,4
= A 1[2 3n ] A (1+3n) or A I(1+ )

The probability of the particle to be located in the region x > [ is

-1 3n2 _3=xx
P = fwdx-—(1+5‘%;) fez e 2ldx

!

®©
-1

4 302 ~(302)y 2 3= )
(“3::) [e ¢ dy = 3ox o = 149%.

6.87 The Schrodinger cquation is
2m
v2w+_h—2(5- U(r))y =0

2 = L 4 (24Y
when 1 depends on r only, Viy r2dr(r dr
X0 dv X x
If we put ) r  dr r R
and Vzw-xr—.’l'huswcget
&
;X S (E-U()x =0
The solution is X = Asinkr, r<rgy
2mE
kz---T—
h
and xX=0r>r

(For r <rg we have rejected a term B cos'k r as it does not vanish at r = 0). Continuity of
the wavefunction at r = r requires
kro =nx
n2 Jt2-"2

2mr§

Hence E, =
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6.88 (a) The nomalized wave functions are obtained from the normalization

1 -fltplde-fltp|24nr2dr

[ o
fA dny’dr = 4:!A2f smz REL dr
0 To
T
- 4nA21f sinfx dr = 4nA2 L B L onAl
nx 4 nx 2
., nmr
sin

Hence A =

’
and P = ! 2

1
V2nrr V2m-ry r
(b) The radial probability distribution function is

P(r)=4nr(y) = -2- in? 257

ro

For the ground state n=1

2 .omr
) Pl(r)-—smz—
To o

. . .. . To
By inspection this is maximum for r = ? Thus r,, = 5

The probability for the particle to be found in the region r <7, is clearly 50 % as one

can immediately see from a graph of sin® x.

6.89 If we put y = X—‘;’—l

the equation for % (r) has the form

x”+%h% [E-U(r)]x(r) =

which can be written as X'+ =0,0s r<r,
and ' —aly =0 rg<r<w
2m(Uy-E
where K= 2sz, 2=m(_20_).
h h

The boundary condition is
x(0) =0
and x, x are continuous at r = ry
These are exactly same as in the one dimensional problem in problem (6.85)

We therefore omit further details
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6.90 The Schrodinger equation is % + = 2 (E - -—kxz)‘l’ =0
We are given WA
2
Then Y= _—xxAe **7?

W' e _x Ay ol pe SF
Substituting we find that following equation must hold

(2 -°=)+;2~(E—%kx2) =0

since ¥ = 0, the bracket must vanish identicall. This means that the coefficient of »* as well
the term independent of x must vanish. We get
2 mk

e e« B2
# o
2

Putting k/m = (n this leads to x = B® and E =

W

6.91 The Schrodinger equation for the problem in Gaussian units

2m w=0
In MKS units we should read (e2/4:teo) for €.
we put Y = X(—) . Then ¥/ +%h [E+—-2-]x=0 1)
We are given that x-np-Ar(l-rar)e““'
s0 X =A(1+2ar) e " —aAr(l+ar)e *’

x' = c?Ar(l+ar)e " -2aA(1+2ar)e " +2aAe™*"
Substitution in (1) gives the condition

aZ(r+ar2)—2a(1+2ar)+2a+2;'2£(5r+e2)x(l+ar) =

Equating thc coefficients of r*, r, and constant term to zero we get

2
2a—2a+2:2e =0 2
2 2m 3
ao +_h—2Ea=O 3)

2 2m 2 0

o} -4aa+;lz—(E+e a) = )

2 2

From (3) either @ = 0, or E-= ta

2m
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2 2 4
me 2 me
In the first case o= —— E= 0o = -
H? 2m 217
This state is the ground state.
m e 1mé
In the second case a=0-—, 0 =3—5
h 2

E-_me4 and a---lme2
8%’ ' 242
This state is one with n = 2 (2s).
6.92 We first find A by normalization

2
- TA -
1 =f41tA2e Mgy = rife *Xdx = nA’R
0

since the integral has the value 2.

Thus A2t ora-

(a) The most probable distance r,, is that value of r for which

pr

P(r) =4nrlw(r)]? =2 e

?lr

is maximum. This requires

P(r)=4 [2r-—2‘ } e 21 =0
3
1£1 n

or r=7ry=rIp.

(b) The coulomb force being given by - /7%, the mean value of its modulus is

<F> -f4:rtr2-1—3 e g,

0 nrl '2
2 2 2
sf 4_1_;1_ e Mgy = z—gfe"‘dx = &;’_
o 1 % £1

In MKS units we should read (e2/4:r:eo) for &

oo 00
2 2 2
(© <U>=f4nr2—1—3e'2'/" i—dr=—e—fx e *dx=-%
A nrl r rl A r1

In MKS units we should read (€>/4x €y ) for &
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6.93 We find A by normalization as above. We get
1
A=

Vnri

Then the electronic charge density is
e'2’/'|

p=-cly|®=-e = p(7)

3
nry

The potential  (7) due to this charge density is

1 p(r’) 2,
q)(;’-hteo |r_'-7’|d3r

s . 1 Q(r') 2 g0 o -e f“_r' -2r/r
so at the origin ¢ (0) 4H€of " 4nrdr ane A e dr
o . 0

e -x e
_4n£0r1-!‘¥e dx (411:(-:0)"1

2m

7 (E-U(x))y =0

6.94 (a) We start from the Schrodinger equation i‘j’_ +
dx*

which we write as ¥, + ¥, = 0, x<0
2mE
P =
B
and W)+l W, =0 x>0
2m
a? = _"—2(E—Uo) >0

It is convenient to look for solutions in the form
ikx ~ikx

Yy =e +Re
Wy =Ae'**+Be " x>0

x<0

In region I(x<0), the amplitude of e'** is written as unity by convention. In II we
expect only a transmitted wave to the right, B = 0 then. So
‘P" - Aeikx x>0

The boundary conditions follow from the continuity of ¥ & % atx = 0.

1+R=A
iK(1-R) =iaA
1-R « k-a

1+R & or R-k+a

Then
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The reflection coefficient is the absolute square of R :
2
k-a

r= lRlz T | k+a

(b) In this case E < Uy, o = - ﬁ2 < 0. Then W, is unchanged in form but
W, = Ae P*yBet*f*

we must have B = 0 since otherwise y (x) will become unbounded as x —> o .
Finally

‘PH = A e_px
Inside the barrier, the particle then has a probability dénsity equal to
2 -
l\l’n, "IAlze_sz

This decreases to - of its value in

1 "
2B T aoVamUE)

6.95 The formula is
X
2
D ~ exp -7—“[ Vam(V(z)-E) dx

1

Here V(x,) = V(x,) = E and V(x)>E in the region x; > x> x; .

(a) For the problem, the integral is trivial

D =~ exp [-%I V2m(Uy-E)

(b) We can without loss of generality take x = 0 at the point the potential begins to climb.

Then
0 x<0
U(x) = Uo§0<x<l
0 x>1
!
Then D ~ exp -%f \/2m(Uo‘7‘-E) dx
'z,
1
-\/2 U,
= exp ‘7% ml e Vx-xy dx xo-lg
0



309

.
4 ,_ZmUo E 32
=exp| - =5 —(l-l—)

[ EY2Vam
exp 3‘hU ———(Uy-E) 2m]

2
6.96 The potential is U (x) = Uo(l -z

) ) The tumning points are

V1= (E/U,)

PO f\/zm{%( )E}d

Then

V1< (E/Uy)

=exp | -

E PN

2
f V2mU, 1——-———dx
Up 1?

|

= exp —%VZmVo f Vxi-x*dx|,
0

Xo = vl - E/Vo
The integral is

X0 n2
f X -x dx—ngcoszed9=—
0 0
[ ml E
Thus Deexp |- V2mUy |1-—
T Uy
nl 2m
=exp | - 3 Tfo—(Uo-E)
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6.3 PROPERTIES OF ATOMS. SPECTRA

6.97 From the Rydberg formula we write
hR
Ey = - ——
(n+oy)

we use R = 13:6 ¢V. Then for n = 2 state

539 = - —28 _ 1. 0(5) state
( 2 + ao)
o = - 0-41
for p state
354 = — ___1_3_9_2
(2+0a;)
o, = - 0:039
6.98 The energy of the 3 p state must be - ( Ey— e @) where - E is the energy of the 3 S state.
Then
hR
Ey-ep = —;
0 P (3 +oy )2
‘\/ h R
= ——— - = - 0'
so oy Eooewr 3 885
6.99 For the first line of the sharp series (35S —> 2 P) in a Li atom
2xhc "R TR
== 7+ p)
M (3+09) (2+ay)

For the short wave cut-off wave-length of the same series

2nxhc hR

A (2+(11)2

From these two equations we get on subtraction

3+a0_\/hR/ 2nhc(M )

=\/ R A,
2n

cAMN’

Thus in the ground state, the binding energy of the electron is
21

E, = —————--ﬁR/ (V-ﬁﬁﬁﬁj-l) = 532 eV

(2+uo 2xcAM

AN =2 -M,
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6.101

6.102
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The energy of the 3 S state is

EGS) - - —R __ _r03ev
(3 - 0-41)
The energy of a 2 S state is
E@S) - - —2R ___ _s39ev
@ - 0-41)
The energy of a 2 P state is
EQP) = - —R __ _3s55ev
@ - -04)

We see that
EQ2S)<EQRP)< E(3S)
The transitions are 3S—>2P and 2P —>2S.
Direct 35 — 2 .S transition is forbidden by selection rules. The wavelengths are determined
by

2nhc

Ey-E; = AE = =5

Substitution gives
A=0816um(3S—>2P)
and A=067T4pm(2P—>2S)
The splitting of the Na lines is due to the fine structure splitting of 3 p lines (The 3 s state

is nearly single except for possible hyperfine effects.) The splitting of the 3 p level then equals
the energy difference

2ahc _2xhc _ 27xhc(M-M)  2mhcAd

AE = =
M M MA A2
Here A M\ = wavelength difference & A = average wavelength. Substitution gives
AE = 20meV

The sharp series arise from the transitions # s —> m p. The s lines are unsplit so the splitting
. . . .. AE .
is due entirely to the p level. The frequency difference between sequent lines is = and is

the same for all lines of the sharp series. It is
1 27t'hc_2n'hc =2RCA)\.
hl M M M

Evaluation gives
1645 x 10 * rad/s
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6.103 We shall 1gnorc hyperfine interaction. The state with principal quantum number n = 3 has

6.104

6.105

orbital angular momentum quantum number
1=01,2

The levels with these terms are 3S,3 P,3 D. The total z;ngular momentum is obtained by
combining spin and angular momentum. For a single electron this leads to

1 .

J = 2' ifL=0

J-L-% and L+% if L =0
We then get the final designations

38y, 3Py, 3Psp, 3D35, 3Dspy.
2 2
- - —>

The rule is that if J = L +S then J takes the values

|[IL-S| to L+S
in step of 1. Thus :

(a) The values are 1, 2, 3, 4,5

(b) The values are 0, 1, 2, 3, 4, 5, 6

(¢) The values are =, =, =, =,

[ ST

3
2

D

A
2

NI\D

For the state 4p, L =1, S = % (since 25+1 = 4). For the state 5d, L = 2,5 =2,

The possible values of J are

531
2’2 2
J:4,321,0 for 5d

J: for 4p

The value of the magnitude of angular momentum is 7V J (J +1) . Substitution gives the
values

4P :

and 'hvi =-h 35

sD:0,nV2,nVe6,nV12,nV20
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6.106 (a) For the Na atoms the valence electron has principal quantem number # = 4, and the

6.107

6.108

6.109

®)

possible values of orbital angular momentum are ! = 0, 1, 2, 3 so [y, = 3. The state

is 2F, maximum value of J is l

2
Thus the state with maximum angular momentum will be
“Fra
For this state M. -1; V —;—% = h 263

For the atom with electronic configuration 1 s22 p 3 d. There are two inequivalent valence
electrons. The total orbital angular moments will be 1, 2, 3 so we pick / = 3. The total
spin angular momentum will be s = 0,1 so we pick up s = 1. Finally J will be 2, 3, 4
so we pick up 4. Thus maximum angular momentum state is

3
Fy
For this state M, =hV4xS = 2nV5.

For the fstate L = 3, For the d state L = 2. Now if the state has spin s the possible angular
momentum are

|L-S| o L+S

The number of J angular momentum values is 2S5+ 1 if L2 Sand 2L +1 if L <S. Since
the number of states is 5, we must have S 2L =2 for D state while S< 3 and 2S+1 =5
in ply § = 2 for F state. Thus for the F state total spin angular momentum

M, =hV23 =nV6

while for D state M, 2 AV6 .

Multiplicity is 2S+1 so S = 1.
Total angular momentum is AV J(J+1) soJ = 4. Then

L must equal 3, 4, 5

in order that J = 4 may be included in

@

7
(b) Here J = 3/2, L = 1 Then S=%,%,
2

©

|[L-S| to L+S.

Here J = 2, L = 2. Then S = 0,1,2,3, 4
and the multiplicities(2S - 1) are

and the mulitiplicities are 6, 4,
Here J = 1, L = 3. Then S =234
and the multiplicities are 579
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[

6.110 The total angular momentum is greatest when L, S are both greatest and add to form J. Now
for a triplet of s, p, d electrons

Maximum spin = § = -;— corresponding to

‘/35 V1S
M=%V 353 ="3

Maximum orbital angular momentum —»

L =3
. 35 #HVi1s
corresponding to M =h )
Maximum total angular momentum J = %
. h
corresponding to M= EV 99
- — —
In vector model L=J-§

or in magnitude squared
2 2 2 57
L(L+1)h* = J(J+1)B+S(S+1)W-2J-S
Thus cQs(<}:§')_J(J+1)+S(S+1)—L(L+1)
2VI(J+1)VS(S+1)
Substitution gives <(7, .S_‘.) = 31-1°

6.111 Toy) angular momentum 7V 6 means J = 2. It is gives that S = 1.
This means that L = 1,2, or 3. From vector model relation

L(L+1)%% = 632 +2H 292V 6 V2 cos 732°

= 59987 ~ 67
Thus L = 2 and the spectral symbol of the state is

*D,.
6.112 In a system containing a p electron and a d electron
S =01
L=123
For S = 0 we have the terms
'p,, 'D,, 'Fy

For § = 1 we have the terms
*Py, °Py, °P,, °Dy, °D,, °Ds, °Fy, °Fs, °F,
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6.113 The atom has §; = 1/2, I, =1, j, '%

The clectron has §, = -;-, I = 2 so the total angular momentum quantum number must be

=2 or 2
J2 2 2

In L -S compling we get S = 0,1. L = 1,2,3 and the terms that can be formed are the
same as written in the problem above. The possible values of angular momentum are consistant

. . . 3 . 3
th the addit - - = =.
wi ¢ addition j; > to j, 2 or 2
The latter gives us J=0123; 1,23, 4
All these values are reached above.
6.114 Selection rules are AS =0
AL ==z 1

AT =0, x1(no 0—0).
Thus 2D3/2 — 2p,, is allowed
3P1 — 251,2 not allowed
3F; — 3P, is not allowed (AL = 2)

4F7/2 - 4D5/2 is allowed

6.115 For a 3 d state of a Li atom, S = % because there is only one electron and L = 2.

The total degeneracy is
g=(2L+1)(2S+1) =5x2 = 10.

The states are 2D, and 2Ds,, and we check that
2

g=4+6= (2x%+1)+(2x%+1)

6.116 The state with greatest possible total angular momentum are
1

For a 2P state J = -2—+1 - -;— ie. 2P3/2

Its degeneracy is 4.

For a °D state J =142 =3 ie. 3D3
Its degeneracy is 2x3+1 = 7

For a °F state Telizadie ‘F, .
2 2 3
Its degeneracy is 2x-9-+1 = 10.

2
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6.117

6.118

The degeneracy is 2J +1. So we must have J = 3. From L = 3 S, we see that S must be
an integer since L is integral and S can be either integral or half integral. If
S =0 then L =0 but this is consistent with J =3 For
Sz2,L =6 and then Jw» 3. Thus the state is

3

F;

The order of filling is
K, L, M shells, then 4s°, 3d" then 4p°. The electronic configuration of the element will
be
1s225%2p%3523p%as23d%4p°
(There must be three 4p electrons)

The number of electrons is Z = 33 and the element is As. (The 3d subshell must be filled
before 4p fills up.)

6.119 (a) when the partially filled shell contains three p electrons, the total spin S must equal

S = % or % The state ,S'/ - %has maximum spin and is totally symmetric under ex-
change of spin lables. By Pauli’s exclusion principle this implies that the angular part of
the wavefunction must be totally anti symmetric. Since the angular part of the wave
function a p electron is vector 7, the total wavefunction of three p electrons is the totally

antisymmetric combination of 7,, 7, and 7;. The only such combination is

Xy X2 X3
- ,—»
’1‘("2"'73’) =123
%1 %%
This combination is a scalar and hence has L = 0. The spectral term of the ground state

is then
45, since J = 3,
3 2
2
(b) We can think of four p electrons as consisting of a full p shell with two p holes. The
state of maximum spin S is then S = 1. By Pauli’s principle the orbital angular momen-

tum part must be antisymmetric and can only have the form
X

where 71' , 72’ are the coordinates of holes. The result is harder to see if we do not use
the concept of holes. Four p electrons can have S = 0, 1, 2 but the S = 2 state is totally
symmetric. The corresponding angular wavefunction must be totally antisymmetric. But
this is impossible : there is no quantity which is amtisymmetric in four vectors. Thus the
maximum allowed S is S = 1. We can construct such a state by coupling the spins of
clectrons 1 & 2t0 .S = 1 and of electrons 3 & 4 to S = 1 and then coupling the resultant

spin states to S = 1. Such a state is symmetric under the exchange of spins of 1 & 2nd
3 and 4 but antisymmetric under the simultaneous exchange of (1, 2) & (3, 4). the con-



6.120 (a)

®)

6.121 (a)

®)
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jugate angular wavefunction must be antisymmetric under the exchange of (1, 2) and
under the exchange of (3, 4) by Pauli principle. It must also be antisymmetric under the
simultaneous exchange of (1, 2) and (3, 4). (This is because two exchanges of electrons
are involved.) The required angular wavefunction then has the form
— —» -2 —
(rlxrz)x(r3xr4)

and is a vector, L = 1. Thus, using also the fact that the shell is more than half full, we

find the spectral term 3P2
(J=L+S).

The maximum spin angular momentum of three electrons can be S = -;- . This state is

totally symmetric and hence the conjugate angular wavefunction must be antisymmetric
By Pauli’s exclusion principle the totally antisymmetric state must have different magnetic
quantum numbers. It is easy to see that for d electrons the maximum value of the magnetic
quantum number for orbital angular mementum |M; .| = 3 (from 2 + 1 + 0). Higher
values violate Pauli’s principle. Thus the state of highest orbital angular momentum con-
sistent with Pauli’s principle is L = 3.

The state of the atom is then ‘F 'y where J = L — S by Hund’s rule. Thus we get
4
F3

The magnitude of the angular momentum is
1 / 35S
T 22 =3 Vis.

Seven d electrons mean three holes. Then S = % and L = 3 as before. But

J=L+S = %by Hund’s rule for more than half filled shell. Thus the state is

4
Fop

Total angular momentum has the magnitude
1 / 9 11 3%
h 23 =32 vil.

3F, : The maximum value of spin is S = 1 here. This means there are 2 electrons.

L = 3 s0 s and p electrons are ruled out. Thus the simplest possibility is d electrons.
This is the correct choice for if we were considering f clectrons, the maximum value of
L allowed by Pauli principle will be L = 5 (maximum value of the magnitude of magnetic
quantum number will be 3+2 = 5.)

Thus the atom has two d electrons in the unfilled shell.

3

2 - =1 -3
P;,, Here L—l,S-2 and J 2
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6.122

6.123

6.124

©

@

Since J = L +5, Hund’s rule implies the shell is more than half full. This means one
electron less than a full shell. On the basis of hole picture it is easy to see that we have
p clectrons. Thus the atom has 5 p electrons.

685,2 Here § = %, L = 0. We cither have five electrons or five holes. The angular

part is antisymmetric. For five d electrons, the maximum value of the quantum number
consistent with Pauli exclusion principle is 2+1+0-1-2) = 0 so L = 0. For f or
g electrons L > 0 whether the shell has five electrons or five holes. Thus the atom has
five d electrons.

If S = 1 is the maximum spin then there must be two electrons (If there are two holes
then the shell will be more than half full.). This means that there are 6 electrons in the
full shell so it is a p shell. By Paul’s principle the only antisymmetric combination of
two electrons has L = 1 AlsoJ = L - S as the shell is less than half full. Thus the term

is 3P,

S = %means either 3 electrons or 3 holes. As the shell is more than half full the former

possibility is ruled out. Thus we must have seven d electrons. Then as in problem 6.120
we get the term 4F9/2

With three electrons S = % and the spin part is totally symmetric. It is given that the basic

term has L = 3 soL = 3 is the state of highest orbital angular momentum. This is not possible
with p electron so we must have d electrons for which L = 3 for 3 electrons. For three
f, g electrons L > 3. Thus we have 3 d electrons. Then as in (6.120) the ground state is

4
Fy
2

We have 5d electrons in the only unfilled shell. Then S = % . Maximum value of L consistent

with Pauli’s principle is L = 0. Then J = i

2

So by Lande’s formula

S(TY,5(7)_
212 %22
g=1+ 2 7 -2
2 2
Ve
Thus u=gVJI(J+1)pg =2 Mg =2V35 pug.

2

The ground state is 655/2 .
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6.125 By Boltzmann formula

6.126

6.127

6.128

Explicitly n = I—VE =nle KT AE =hR[1-=

N & o~ AE/KT
N g
Here AE = energy difference between n = 1 and » = 2 states

- 13-6(1 -%)ev - 1022V
g = 2 and g, = 8 (counting 25 & 2P states.) Thus

N, 4e-'10'22x1’602)(10-“/1'38)(1043:(3&!) -27%x10-Y
Nz
N 1

1 n2

for the nth excited state because the degeneracy of the state with principal quantum number
nis 2n%

We have
8 <ho/kT - 8 _-2hc/hkT
—_— P - — e
N % 8o
Here g = degeneracy ofthe 3P sate = 6, gy = degeneracy of the 3S state = 2 and
A = wavelength of the 3P—>3S line (2’? £ energy difference between 3P & 35
levels.
I . N -4
Substitution gives — = 1113x10
No

Let T = mean life time of the excited atoms. Then the number of excited atoms will decrease
with time as e “7. In time ¢ the atom travels a distance vt so ¢ = v-l— Thus the number of

excited atoms in a beam that has traversed a distance / has decreased by
-inT
e

The intensity of the line is proportional to the number of excited atoms in the beam. Thus

e VT o 1 or T = . 1-29 x 10 ™% second.
n vinny

As a result of the lighting by the mercury lamp a number of atoms are pumped to the excited
state. In equilibrium the number of such atoms is N. Since the mean life time of the atom is

2rhc
A

T, the number decaying per unit time is g . Since a photon of energy results from

2 n: 4 %’- . This must equal P. Thus

cach decay, the total radiated power will be

2xhc P‘I:l._ . 9
N-Pt/ 3 "3k 67 x 10
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6.129

6.130

6.131

The number of excited atoms per unit volume of the gas in 2P state is

N = n52 p-2%henkT
8

Here g, = degeneracy of the 2p state = 6, g, = degeneacy of the 2s state = 2 and
A = wavelength of the resonant line 2 p —> 2 5. The rate of decay of these atoms is g per

sec. per unit volume. Since each such atom emits light of wavelength A, we must have

LZn'hcngee-zrhm.kr =P

T A 8s
Thus v = L27he By -20heART | 654,10 %5 = 65-4ns
P A 8
(a) We know that
Py = Ay
P;" = By,
e _'h(o3 1 Ay
T hed An P e™T_ T GhoAT |
P 1

Thus

P T GhoAT 4
For the transition 2P —> 1S5 1o = %‘hR and

Lin
Py ShokT
-~ e

we get =
Py

substitution gives 7x 10~ 18

(b) The two rates become equal when e"®*T = 2

or T=(ho/kin2) =171x10°K

Because of the resonant nature of the processes we can ignore nonresonant processes. We
also ignore spontancous emission since it does not contribute to the absorption coefficient and
is a small term if the beam is intense enough.

Suppose ] is the intensity of the beam at some point. The decrease in the value of this intensity
on passing through the layer of the substance of thickness d x is equal to

-dl =XIdx = (NlBu-NzBm)(é)hm dx
Here N; = No. of atoms in lower level

N, = No of atoms in the upper level per unit volume.
B, , By are Einstein coefficients and I, = energy density in the beam, ¢ = velocity of
light.
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6.133

A factor h @ arises because each transition result in a loss or gain of energy #

ho N, B,
Hence X = TNIBIZ(l -NlBll
But 81B1; = 8By so
ho s N,
x = —N;Bp|1-==-
c ! 12( 82N1)
N, o
By Boltzman factor 2. gle"’””/”
N &

When 5  >>k T we can put N; = N, the total number of atoms per unit volume.

Then x -xo(l—e:'""/”)
where x; = ?-;No B,, is the absorption coefficient for T — 0.

h

321

A short lived state of mean life T has an uncertainty in energy of A E _ — which is transmitted

~T
to the photon it emits as natural broadening. Then
22
2nct’

A(Dm-';‘— SOAM-

The Déppler broadening on the other hand arises from the thermal motion of radiating atoms.

The effect is non-relativistic and the maximum broadening can be written as

A_;‘%_zﬁ-z‘_z:ﬂ

A

AN 4nv, T
Thus Dopp. ., A

A A

Substitution gives using v, = V 211;T = 157 m/s,

A Apogp
A e

Note :- Our formula is an order of magnitude estimate.

~ 12 x10°

From Moseley’s law

o, = %R(Z—l)z

or A -i 1
= 3R(z-1Y
M (Cu)  (5\2  (Zgo -1\
e (Fe) (‘z§) = (zc,,- 1)

Thus
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6134

6.135

6.136

Substitution gives

Ag (Cu) = 1539 pm
(a) From Moseley’s law

gy = %R (Z-0)
2rc _8=nc 1
o, 3R (Z-o)
We shall take 0 = 1. For Aluminium (£ = 13)

A (A1) = 8432pm

or A =

and for cobalt (Z = 27)
)vx. (Co) = 1796 pm

(b) This difference is nearly equal to the energy of the K, line which by Moseley’s law is
equal to (£ =23 for vanadium)

AE '7'“’&, = %x 13:62 x 22 x 22 = 494 keV

We calculate the Z values corresponding to the given wavelengths using Moseley’s law. See
problem (134).
Substitution gives that

Z = 23 corresponding to A = 250 pm
and Z = 27 corresponding to A = 179 pm

There are thus three elements in a row between those whose wavelengths of K, lines are
equal to 250 pm and 179 pm.

From Moseley’s law

. 8xnc 1
L AS Oy STy

where Z = 28 for Ni . Substitution gives
Mg (Ni) = 1665 pm

Now the short wave cut of off the continuous spectrum must be more energetic (smaller
wavelength) otherwise K., lines will not emerge. Then since AA = Ax —Ag = 84 pm we get

Ao = 82:5pm
This corresponds to a voltage of

- 2xhc

Ve

Substitution gives V = 15-0kV



6.137

6.138

6.139

6.140
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Since the short wavelength cut off of the continuous spectrum is
Ao = 0-50 nm
2nhe
eho

since this is greater than the excitation potential of the K series of the characteristic spectrum
(which is only 1-56 kV') the latter will be observed.

the voltage applied must be V=

=248kV.

Suppose Ay = wavelength of the characteristic X-ray line. Then using the formula for short
wavelength limit of continuous radiation
2nhc
)‘0 - e Vl l
2nhc  n
M - e V2
Vi
2t v
nhc
H = —T
ence Mo eV, )

Using also Moseley’s law, we get

-‘/SJtc n-1 eV,
Z=1+ 3R)~‘1+2 =29 .

3RV,
n--L
v,
The difference in frequencies of the K and L Continium
absorption edges is equal, according to the Bohr — £~ -J\'L_ Z'e'_—"' -
picture, to the frequency of the K, line (see the eag h=4
diagram below). Thus by Moseley’s formule n=4
3 2 K
Y
4Aw .
or £Z=14+ 3R - 22 K L fma
The metal is titanium. A — n=1

From the diagram above we see that the binding energy E, of a K electron is the sum of the

energy of a K, line and the energy corresponding to the L edge of absorption spectrum

2xhc
N

For vanadium Z = 23 and the energy of K, line of vanadium has been calculated in problem
134 (b). Using

E, = +%‘hR(Zl)2

2rhc
M
we get E, = 546 keV

= 051keV for N, = 2:4nm
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6.141 By Moseley’s law
ho = 2"):'" Ex-E, = %-hR(z- 1)?
where - Eg is the energy of the K electron and — E; of the L electron. Also the energy of the

line corresponding to the short wave cut off of the K series is
E 2nhce 2nhc
K = =
A-AN  2mc AR
()

T hw
1 AA _u)A)»
w 2nc 2nc
o o
Hence E, =———-hos=
l_mAk 2:tc_1
2nc wAM

Substitution gives for titanium (£ = 22)
® =685 x10¥s1

and hence E; = 047 keV
6.142 The energy of the K, radiation of Z n is
’ 3
o = —4-

BR(Z-1)
where Z = atomic number of Zinc = 30. The binding energy of the K electrons in iron is

obtained from the wavelength of K absorption edge as Ex = 2 c/Ag

2xhc

Hence by Einstein equation
3 2
T = Z’hR(Z—l) i w

Substitution gives
T = 1463 keV

This corresponds to a velocity of the photo electrons of
v =227x10%m/s

+J(J+1)+S(S+l)—L(L+1)

6.143 From the Lande formula
2J(J+41)

g=1

(a) For S states L = 0. This implies J = S. Then, if S=0
g=2

(For singlet states g is not defined if L = 0)
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(b) For singlet states, J = L
J(J+1)-L(L+1) _
2J(J+1)
1
2

g-1+ 1

6144 (a) °F, Here S-%,L-S,J—
2

PN
w

1. tat2 8- _ 2
g N 6 3

4

() ‘Din: Here S=3,L=2,7=3

g=1+ =1+ =0

() F, Here S=2,L=3,J =2
6+6-12

— = 1

2x6

g=1+

(d P, Here S =2,L=1,J =1
2+6-2

g=1+=3

-3
2
(¢) >P,. For states'with J = 0, L =5 the g gactor is indeterminate.

a) Forthe 'Fstate S = 0, L =3 = J
6.145
Ix4-3x4

g§=1+70 3xa !

Hence p=vV3ix4 uB-Zﬁu,

() Forthe Dy state S = 3, L =2,7 =3

Hence u= g_\/ 15/4 pug = -g-\/ 15 pg= 2‘\/ g_ g -
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(c) We have

4 _ 1+JgJ+1!+2—6

3 2J(J+1)
or g-J(J+1)=J(J+1)—4
or J(J+1) =12 =] =3

4 8 -
Hence W=-VI12pg = — pg.

3 VE)

6.146 The expression for the projection of the magnetic moment is
Uz = My g
where my is the projection of .? on the Z-axis.
Maximum value of the m; is J. Thus
gJ =4
Since J = 2, we get g = 2. Now

+J(.H»1)+S(S+1)—L(L+1)
2J(J+1)
+6+ S(S+1)-6
2x6

- 1+S§S+1!

12
Hence S(S+1) =12 or S =3

Thus Mg =1V3x4d =2V3h

6.147 The angle between the angular momentum vector and the field direction is the least when the
angular mommentum i)rojection is maximum i.e. J%.

2=1

=1 ,ﬂsL‘z

Thus Jh = VI(J+1) hcos30°
I _V3
or T7+1 T 2
Hence J=3
Ix4+1x2-2x3 8 4
Then g =1+ 34 =553
and u-f‘-\/3x4u -—g—-u
3 R

6.148 For a state with n = 3, / = 2. Thus the state with maximum angular momentum is
2
Ds,,
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Then g=1+

6-‘/5 7 .‘/7
Hence p.-g 2% ug =3 5 Bs-

6.149 To get the greatest possible angular momentum we must have S = S, = 1
L=L,=1+42=3andJ=L+S5S=4

4x5+1x2-3x4 10 S
Then =1+ axs w2
and u--i—\'4x5u,-§—\;-_5—u,.

6.150 Since p = 0 we must have either J =0 or g = 0. But J = 0 is incompatible with
L=2andS = %.Henceg- 0. Thus

3 5
J(J+1)+2x2—2x3

0=1+ 27(T+1)
15 9
or —3J(J+1)-7-—6--4
Hence J =

N | =
X
N|Ww] N

Thus M=" --’-%?-

6151 FromM =nVJ+1 =V24
we find J = 1. From the zero value of the magnetic moment we find

g=0

+1x2L(L+1)+2x3 -
2x1x2

1+—L(L~4l-1!+8 -0

or 12 =L(L+1)
Hence L = 3. The state is

or 1 0

5F,.
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6.152

6.153

-
If M is the total angular momentum vector of the atom then there is a magnetic moment

—- —

Hm = EUg M/h

-
associated with it; here g is the Lande factor. In a magnetic field of induction B, an energy
- —>
H = -gugM-B/h

is associated with it. This interaction term corresponds to a presession of the angular

momentum vector because if leads to an equation of motion of the angular momentum vector
of the form

iM =

Fra QxM

- B
where Q=g:f

Using Gaussian unit expression of ug pg=0-927 x 10-% erg/gauss, B = 10° gauss
# = 1054x 10" 7 erg sec and for the 2P3/2 state

35 1 3
+-2-X§+-2-X‘2-—1X2 -1_
2x§-x£ 3

22
and Q = 117x 10 rad/s
The same formula is valid in MKS units also But pg= 0-927 x 10°2Am?,B=10""T and

g=1

# =1-054 x 10~ 3 Joule sec. The answer is the same.

—
The force on an atom with magnetic moment w’in a magnetic field of induction B is given
by — —_ > —

F=(n-V)B

. . —>, . .
In the present case, the maximum force arise when p is along the axis or close to it.

dB
Then E; = (Uz )max 3Z
Here (g )max = g ugJ . The Lande factor g is for 2P1/2
1.3 1.3
_1+2x2+2x2—1x2=1__1£_-2_
&= ,L.3 3273
2 2
1 1
and J = 'i 50 (Mg )max = 3“’8'
The magnetic field is given by
wo  2Inr?

RN
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6.155
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or ?ﬁ= —ﬁélnrz——é——.
0Z 4n (r2+22)5/2
dR, W 3Im
Thus (az BRI
Thus the maximum force is
Faly o3zl
3R 2

Substitution gives (using data in MKS units)
F=41x10"7N

The magnetic field at a distance r from a long current carrying wire is mostly tangential and
given by
Mol Mo 2/

B"’=2nr 4x r

The force on a magnetic dipole of moment i’ due to this magnetic field is also tangential and
has a magnitude

( lI’ V.) Bq:
This force is nonvanishing only when the component of ﬁ'along r'non zero. Then

d o 217
FemggBe=-tgm

Now the maximum value of u, = + pg. Thus the force is

Foax = w%% - 297x10"%N

In the homogeneous magnetic field the atom experinces a force

dB
F=glug7

Depending on the sign of J, this can be either upward or downward. Suppose the latter is
true. The atom then traverses first along a parabola inside the field and, once outside, in a
straight line. The total distance between extreme lines on the screen will be

2 ]
1(h) Lk / m
21lv v Vv } v
Here my is the mass of the vanadium atom. (The first term is the displacement within the

field and the second term is the displacement due to the transverse velocity acquired in the
magnetic field).

0B
b = 2ng‘Ba_Z

ey —— )
Thus using -;-mvv2 =T L LZ_)‘ 2
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9B _ 278
0Z gugJh(h+2h)

For vanadium atom in the ground state ‘Fg,z .
3x5+3x5

we get

-1+ 4 4 -3X4=1+30-48-1 182
§ 3x5 0 “30 "5
2x
4
J = -;—, using other data, and substituting
3B _ a5 10
we get ’Y; 145 x 10 G/cm

This value differs from the answer given in the book by almost a factor of 10°. For ncutral
atoms in stern Gerlach experiments, the value T = 22 MeV is much too large. A more
appropriate value will be 7 = 22 meV i.e. 10° times smaller. Then one gets the right answer.

6.156 (a) The term 3P, does not split in weak magnetic field as it has zero total angular momentum.

(b) The term ’F 's,2 Will split into 2 x S +1 = 6 sublevels. The shift in each sublevel is given

2
by
AE = -gusM;B
where M; = - J(J-1), ..., J and g is the Landi factor
S5x7 1x3
=1+ 4 ' 4 —3X4-1+38-48-'6—
g 5 5xT 0 7
4
(c) In this case for the “D,,, term
1x3 3x5
=1+ 4 * 4 —2X3_1+3;15_:.2_‘1_1_1_0
&= 1x 3 = 6 =
2 x 2

Thus the energy differences vanish and the level does not split.

6.157 (a) For the 'D, term

2x3+0-2x3
g = 1+'W- 1
and AE = - pygM; B
M; = -2,-1,0,+1,+2. Thus the splitting is
OF = 4ugzB

Substitution gives O E = 579 p eV



3 4x5+1x2-3x4 10 5
(b) Forthe “Fyterm g =1+ 2x4x5 =1+40—4.
and A--%p,BM]
where M; = -4 to +4.Thus

6.158 (a)

®)

©

)

dE = %p.,BxS - 10ppB(= 287 1p)
Substitution gives 3 E = 1447 peV
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The term P, splits into 3 lines with My = £ 1, 0 in accordance with the formula

AE = -gugBM;

1x2+0-1x2
where g=1+ 2 x1x2 =1

The term 1So does not split in weak magnetic field. Thus the transitions between

1P1 & S, will result in 3 lines i.e. a normal Zeeman triplet.

The term 2D5,2 will split ot in 6 terms in

accordance with the formula

T AE = -gugMy

Mlsxg,:%,:%—,and

Sx7+1x3-4x2x3

6
g=1+ Ix5Sx7 =5

Ther term 2P3 2 Will also split into 4 lines in accordance
with the above formula with
Ix5+1x3-4x1x2

3 1
Mz-tz,tzandg-1+ %35 =

Wi

It is seen that the Z eeman splitting is auomalous as g
factors are different.

*p, —°p,

The term 3D1 splits into 3 levels (g =5/2)

The term 3P0 does not split. Thus the Zeeman
spectrum is normal.

For the 5I5 term

Sx6+2x3-6x7
2x5x6

36 - 42 1 9

=]l-— = —

60 10 10

g=1+

=14+
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For the 5H4 term

- 1+4><5+2><3—5><6 - 1.'_26—30 .9
g 2x4x5 40, " 10

We see that the splitting in the two levels given by AL = - g ug B My is the same though
the number of levels is different (11 and 9). It is then easy to see that only the lines with
following energies occur

hoyg,hay x gugB.
The Z eeman pattern is normal
6.159 For a singletterm S =0, L =J, g = 1
Then the total splitting is OE = 2JugB
Substitution gives J=3(=08E/2uzB)
The term is 1F3 .
6.160 As the spectral line is caused by transition between singlet terms, the Z eeman effect will be

normal (since g = 1 for both terms). The energy difference between extreme components of
the line will be 2 ug B .This must equal

A(2n'hc) _2mhcAM

A \2
2
pg B A
= = 35 .
Thus AA he pm
6.161 From the previous problem, if the components are A, A + A A, then
A _2nhe
For resoluti A <R = vy of the instrument.
rr on = =5 e
2nthc 2athc
R B
Thus MBBKS or 3 1 AR
Hence the minimum megnetic induction is
2ahc
B.in = ny AR " 4kG = 04T

6.162 The 3P0 term does not split. The 3D1 term splits into 3 lines corresponding to the shift.
AE = -gugBM;
with M; = = 1,0. The interval between neighbouring components is then given by
ThAw = gugB
hAw
T

Hence B



333

Now for the 3D1 term

_ l+1><2+1><2—2><3 - 1+4-—6 _l
£= 2x1x2 4 "2

Substitution gives B = 3.00 kG. = 0.3 T.

6.163 (a) For the 21’3/2 term

2><§-c--1-><:—{}---1><2
g=1+2222 =1+_=ﬁ
N 073
272

and the energy of the 2P3,2 sublevels will be
4
E(My) = Ey-3usBM;

where M; = = %, £ -;— Thus, between neighbouring sublevels.
4
3E(%Ps) = FhsB

For the 2P1 ,, terms

1 3 1 3
2x5+2x5—1x2
g=1+
2xlxi
2 2
6-8 1 2
=1+ 6 =1—3=3

and the separation between the two sublevels into which the ZPVZ term will split is
BE(%Pys) = 2B
The ratio of the two splittings is 2 : 1.
(b) The interval between neighbouring Zeeman sublevels of the 2P3,2 term is guBB. The

energy separation between D, and D, lines is 2 7;;’ €A (this is the natural separation

of the 2P them)

4 2rhcAM

Thus 3""3'—71.—
or B=3n‘hc2Ak
2ugh'm

Substitution gives
B =546k G
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6.164 For the 2P3 ,2 level g = 4/3 (see above) and the energies of sublevels are

’ ’ 4 ’
E'=E'o-zusBMy

where M, = = %, £ %for the four sublevels
For the 251 level, g = 2 (since L = 0) and
2
E = Ey-2ppBM;

where M, == %
Permitted transitions must have
AMy; =0, =1
Thus only the following transitions occur
3,1 10
2 2 Aw = = pgB/h = 396 x 10" rad/s
~-3/2—>-1/2
%_’ 3 1
2 law=zip B/h=132x10"rad/s
1 1 3
-
2 2
1 1
2772 5 wB 10
_l 1»_ Au)-:g—_;;—'-&ﬁxlo rad/s
2 2
These six lines are shown below
3
3 ST T Yk
1
=3 + 2/54458B
2 |
|
|
_1 y y } Y
- 7 :. MBB
R 2 A A
-1 UgB

— e e
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6.165 The difference arises because of different selection rules in the two cases. In (1) the line is

emitted perpendicular to the field. The selection rules are then
AM; =0, =1

In (2) the light is emitted along the direction of the field. Then the selection rules are
AM; = =1
AM; = 0 is forbidden.

(a) In the transition 2Py, —> %S,
This has been considered above. In (1) we get all the six lines shown in the problem
above

In (2) the line corresponding to %—) % and - % - -% is forbidden.

Then we get four lines

®) *P,—s,
2x3+1x2-1x2
2x2x3

so the energies of the sublevels are

For the 3P2 level, g = 1+ - %

E' (M) = Eo-5us BMy
where M;,=+2,+1,0
For the 3S1 line, g = 2 and the energies of the sublevels are
E(Mz) = Eo-2usBM;
where M; = = 1, 0. The lines are
AM; = M;-M;=+1 : -2—>-1,-1—20and 0> 1
AM;=0-1—>-1,0—0,1—1
AM; =1,2—1,1—20,0—>-1
All energy differences are unequal because the two g values are unequal. There are then
nine lines if viewed along (1) and Six lines if viewed along (2).

6.166 For the two levels
Ey = Ey-g WsM,B

Ey = Ey-gusMz B
and hence the shift of the component is the value of
ug B '
Aow = + [g'M-Z—gMZ]

subject to the selection rule AM; = 0, + 1. For 3D3
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2—1
1—=2
1—1
1—0

;o l_'_3><4~|»1><2—2><3 _ 1+_§._ 4
£ = 2x3x4 B 249 3
For °P,,
- 1+2><3+1x2—1><2 - 3
& 2x2x3 2
s B
Thus Aw = l»l_h
For the different transition we have the following table
Mg -Mzg
wg B 0—1 "%P'BB
1 0
-guBB 0—>0
7/6 pg B 0—>-1 3/2ugB
_5/3}“8‘8 _I—DO _4/3“‘3B
_1/6uBB -1—-1 1/6|J.BB
4/3 ug B -1—>-2— 5/3 ug B
~2—>_1— -7/6 ug B

-2—>_2— 1/3 uz B
-3—=>_-2— —uBB
There are 15 lines in all.

The lines farthest out are 1 — 2 and -1 — - 2.

The splitting between them is the total splitting. It is
Aw = 13_0 WUa B/h

Substitution gives A w = 7-8 x 10" rad/sec .



6.4 MOLECULES AND CRYSTALS

6.167 In the first excited rotational level J = 1

6.168

6.169

6.170

2

h 1.2 .
so E; =1 x2-2—I = ilw classically
Thus m-ﬁ%

Now I.zmir,?-ﬂ£+."_'.éz.. &

24t23 "%

whére m is the mass of the mole cub and 7; is the distance of the atom from the axis.

avV2n
md

The axis of rotation passes through the centre of mass of the HCI molecule. The distances of
the two atoms from the centre of mass are

= 1:56 x 10" rad/s

Thl:l‘ W =

me; my
dy=—d,dy = ——d
H mycy a. myci
Thus / = moment of inertia about the axis
4 my mc;
= Emﬂdfl"‘mad?fl = m
The energy difference ;bctw.cen two neighbouring levels whose quantum numbers are
J&J-1is
L JH
L. =2 " \V4
57 2J 7 7-86 me

Hence J = 3 and the levels have quantum numbers 2 & 3.

The angular momentum is V2IE = M
Now I'= '—n% (m = mass of O, molecule) = 1-9584 x 10~ ¥ gm ¢?
So M = 368x10 % ergsec. = 349"

(This corresponds to J = 3)

2
From E; = 57](]+1)

and the selection rule AJ = 1 or J—>J -1 for a pure rotational spectrum we get

w(J,J-1) =-h—IJ-

Thus transition lines are equispaced in frequency Aw = 71—'
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In the case of CH molecule

=2 - 1-93 x 10~ * gm cm?

Aw
Also '
m‘. + my
s0 d=1117x10"%cm = 1117 pm

6.171 1f the vibrational frequency is wy the excitation energy of the first vibrational level will be 7w
Thus if there are J rotational levels contained in the band between the ground state and the
first vibrational excitation, then

J(J+1)#
71(00=

21
where as stated in the problem we have ignored any coupling between the two. For HF
molecule
I= T & = 1-336x10'4gmcm2
my +mg
271w,
Then J(T+1) = === = 1974

For J =14,J(J+1) = 210. For J = 13 ,'J(J+1) = 182. Thus there lie 13 levels
between the ground state and the first vibrational excitation.

.21y
6.172 We proceed as above. Calculating 7

21wy
*h

we get

= 1118

2

Now this must equal J(J +1) = (J+ %—)

Taking the square root we get J =~ 33.
6.173 From the formula

2
J(J+1)§'7 = E weget J(J+1) = 21E/H*

or J+l2—-1---z—££
2] 4 9
1 -‘/1 21E
Hence J——2 4+ 2
wiiting J+1 --%+\/%+%§(E+AE)



1 21 21 1 2IE
we find 1= 4+1:2E+112 AE-VI‘+_"2
12
1 21 AE
=- 4+."2E 1+E > -1
*81
1 21 AE
«V3+3E: )
2(E+ﬁ)

The quantity % is KIE For large E it is
an /I
dE 2H°E
For an iodine molecule
I = md/2 = 757 x 10~ ® gm cm®
Thus for J = 10

dN I I

dE ) VI

21:2-571(”1)

Substitution gives

dN 4
7E - 1-04 x 10" levels per eV
6.174 For the first rotational level
. #
E,, = 221 =7 and
for the first vibrational level E,;, =h o
Ewp Io
Thus E= En iy
Here @ = frequency of vibration. Now
I=n &P = my m;

my+m,

339
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(a) For H, molecule I = 4-58 x 10~ *' gm cm? and E =36

(b) For HI molecule,

I=4247x10"“gmcm® and & = 175
(¢) For I, molecule

I=757%x10"®¥gmcm? and E = 2872

2
6.175 The energy of the molecule in the first rotational level will be 1'7.'I‘hc ratio of the number

of molecules at the first excited vibrational level to the number of molecules at the first
excited rotational level is
o ~Mo/kT

(27+1 )e-a’uulyzur

| -F 1 _f(e-
e Ra/kT -K/IkT _ 3e K(w-2BVkT

where B =h21
For the hydrogen molecule I = %m,‘,d2
= 4-58 x 10'41gmcm2
Substitution gives 3-04 x 10 ¢
6.176 By definition

FR: -BE,
<E> = 2 E"e-E"/kT _?_B_a_ioe__

Y exp(-E,/kT) e-PE
vgo
In i S L L _k_lf

v=0
In o~ V2Bhe 1
l1-¢e

_%‘hmﬁ—ln (l—e'”“’)]

@ @
l“’ ':nl“’ -u:""‘

Q
™

1 hrw

=h —_—
2 ‘”*eu,/kr_l



6.177

6.178

Thus for one gm mole of diatomic gas

2
R ho oFOkT
I<E> kT
Cva =N AT ~  aenr - \?
(1)
where R = N k is the gas constant.
LX)
In the present case XT " 27088
and Cy,, = 056R
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In the rotation vibration band the main transition is due to change in vibrational quantum
number v —> v - 1. Together with this rotational quantum number may change. The “Zeroeth

line”

1—>0 or 0—1 in the rotational quantum number. Now
E = E, + — J(J+ 1)

2

Thus ‘hm-‘hmo+.h (£2)
2% 2%h

Hence Ao = = - =
© T "W F

2h

s0 1=V ise

Substitution gives d = 0128 nm .

If A = wavelength of the red satellite
and A, = wavelength of the violet satellite

2xhc 2mhc
then = -hw
Ag Ao
2xhc 2mhe
and = +ho
Ay M
Substitution gives
Ag = 4243 nm
A’V = 386’8 nm
The two formulas can be combined to give
A - _2EC Ao
2nc - o

+

(7 hoo
Ao *ox

a

0-—>0 is forbidden in this case so the neighbouring lines arise due to
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6.179

6.180

6.181

As in the previous problem

i. —1_ nC(kR"AV) 14
m-nc()‘v-)w)- P My = 1368 x 10 " rad/s

The force constant x is defined by

x = po’
where p = reduced mass of the S, molecule.
Substitution gives x = 5:01 N/cm

The violet satellite arises from the transition 1 —> 0 in the vibrational state of the scattering
molecule while the red satellite arises from the transition 0 — 1. The intensities of these two

transitions are in the ratio of initial populations of the two states i.e. in the ratio
o FWAT

Thus = e FAT _ 0.067

e

If the temperature is doubled, the rato increases to 0-259, an increase of 3-9 times.

(a) CO,(0-C-0)

The molecule has 9 degrees of freedom 3 for each atom. This means that it can have up
to nine frequencies. 3 degrees of freedom correspond to rigid translation, the frequency
associated with this is zero as the potential energy of the system can not change under
rigid translation. The P.E. will not change under rotations about axes passing through the
C-atom and perpendicular to the O — C - O line. Thus there can be at most four non zero
frequencies. We must look for modes different from the above.

One mode is O~ @ % Wy
<« —> <«
Another mode is O % O: wz

These are the only collinear modes.

A third mode is doubly degenerate :  (W3:

(vibration in & L to the plane of paper).

() CH(H-C-C-H)
There are 4 x 3 -3 -2 = 7 different vibrations. There are three collinear modes.
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- - _— —
4y O—DO—2—O
< —_— —> <
w, O—&——0
- = —>
wsO—E—H95—0

Two other doubly degenerate frequencies are

w4

ws

together with their counterparts in the plane L” to the paper.

Suppose the string is stretched along the x axis from x = 0 to x = / with the end points
fixed. Suppose y(x,t) is the transverse displacement of the element at x at time f. Then
y (x,t) obeys

&y - v2 3’y
at o

We look for a stationary wave solution of this equation
y(x,t) = Asin%xsin(mt+6)

where A &  are constants.. In this from y = 0 at x = 0. The further condition
y=0 at x =]

implies %1=Nu, N>0

or N = -—l—m
nv

N is the number of modes of frequency < w.

Thus dN = —l-—dm
"V
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6.183 Let E(x,y,t) be the displacement of the element at (x,y) at time ¢. Then it obeys the

equation
__§ _§ it
ar? Yoy
where §-Oatx-0,x-l,y-03ndy-l.

We look for a solution in the form
E = Asink,xsink,ysin(wz+93)

Then mz'V2(k§+"§)

we write this as

o m? .-(’—“’)
v

Here n,m > 0. Each pair (n,m) determines a mode. The total mumber of modes whose

frequency is < o is the area of the quadrant of a circle of radius i—‘% ie.

lm2
N'z(rv)

2

Then dN = swdw = 2a)dw.

2nv 2nv

where S = 12 is the area of the membrane.

6.184 For transverse vibrations of a 3-dimensional continuum (in the form of a cube say) we have
the equation

—

—?—E-vsz’zg divE =0

at?
Here E’- —’(x, ¥,2,t). We look for solutions in the form
—
g’-Asinklx sink,y,sink;3,sin(wt+9)

This requires > = v ( +k§+f)
From the boundary condition that E =0forx=0,x=l,y=0,y=1,3=0, 3= [, we get
nlJt

Tk T

where n,; n,, n3 are nonzero positive integers.

ky = —

2

lo
We then get ni+nien = (;-;’-
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Each triplet (n,, n;, n;) determines a possible mode and the number of such modes whose
frequency = w is the volume of the all positive octant of a sphere of radius i—%— . Considering

also the fact that the subsidiary condition div E’- 0 implies two independent values of A for
each choice of the wave vector (k;, k;, k3)

we find
1 4n{lo Vo’
Ney=3 T(nv) 32V
V w?
Thus dN = — do.
2V

6.185 To determine the Debye temperature we cut off the high frequency modes in such a way as
to get the total number of modes correctly.

(a) In a linear crystal with ny ! atoms, the number of modes of transverse vibrations in any
given plane cannot exceed nyl. Then
lllo

1 f l
nl=v) 40 =5y
[
The cut off frequency wy is related to the Debye temperature @ by
h Wy = k©

Thus O = (%)nnov

(b) In a square lattice, the number of modes of transverse oscillations cannot exceed ngyS.

Thus
(l)o
S f S 2
nyS = wdon = w
0 2nv? 0 4nv? 0
+
or O = kmo-(:)(\/4nno)v

(c) In a cubic crystal, the maximum number of transverse waves must be 2ny V (two for
each atom). Thus

3
|4 2 Vwy

2n V=—-fwdw= .

0 1r2v30 3V

Thus (-3=(2—)v(6n2no)w.




346

6.186 We proceed as in the previous example. The total number of modes must be 3 nyv (total
transverse and one longitudinal per atom). On the other hand the number of transverse modes
per unit frequency interval is given by

2
AN = Y24
n vy

while the number of longitudinal modes ner unit frequency tnterval is given by
Vo’

2n2vi'

dNl - dw

The total number per unit frequency interval is

If the high frequency cut off is at wy = %‘9—, the total number of modes will be

3

V (2 1)(k©

3nyV = = +3|5
"o 6;(vi+v|3|)(-h)

Here ng is the number of iron atoms per unit volume. Thus

1/3
T 2 2 1
© = —-(18n"n —+—=
k 0/ (vi vﬁ)
For iron
M PN
ng = NA '5‘ - MA

(p = density, M = atomic weight of iron N, = Avogadro number).
ny = 8389 x 10% per cc

Substituting the data we get
O = 4691 K

6.187 We apply the same formula but assume v| = v,. Then

(C] -;:-v(6n2no)V3

or v=k9/ [“h(GJtzno)m]

For Al
PNa

ny = = 6:023 x 107 per c.c
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Thus v = 339 km/s.
The tabulated values are v = 6:3km/s
and v, = 3-1km/s.

6.188 In the Debye approximation the number of modes per unit frequency interval is given by

dN = 2do 0s 0sk®
v

h
k©
But 5 =TV
Thus dN-—l—-dm,Os W< Tnyv
nv
The energy per mode is <E> = %‘hmi»———-——eh:,‘:;_l

Then the total interval energy of the chain is

Ty v
U= —l—f Lode
FAY 2
0

nnyv ) B/T
1 ho In 2 1 zf xdx T 1
+nvfehm/xr_ld“" 4nv(7‘”0") +—nv‘h(kT) o1 Ingk k(:\:nov) 2
0 [}

e/r
i fxdx
ok vy J -1
0

We put Ingk = R for 1 mole of the chain.

efr
1 (1Y f xdx
Then U=RO Z + ('é‘) Z—l_
0
Hence the molar heat capacity is by differentiation

e/r

U T fxdx /T
Cy=|—| =R|2|= o S
v (aT)e (9) -1 ee/r_l

0

when T>>0,C, =K.
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6.189 If the chain has N atoms, we can assume atom number Q0 and N + 1 held ficed. Then the
displacement of the n™ atom has the form

. mxn .
u, = A(sm-—i—-na)smcot

Here k = -"l—n . Allowed frequencies then have the form

. ka
© = Wp,, Sin—

2
In our form only +ve k values are allowed.
The number of modes in a wave number range dk is

aN - L4k _Ldk,
] xdow
a ka
But do = EmmcosTdk
do _ayf 2 _ 2
Hence 2k =~ 2 ¥ Qmux—
So dN = 2L __do
Tta 2“_0)2

i.e. the number of atoms in the chain.

’ MCU

6.190 Molar zero point energy is %R ©. The zero point energy per gm of copper is z;@
Cu

is the atomic weight of the copper.
Substitution gives 48-6 J/gm .

6.191 (a) By Dulong and Petit’s law, the classical heat capacity is 3 R = 24-94 J/K - mole. Thus

C
— = 06014
Ca

From the graph we see that this

C T
value of -CZ corresponds to o " 0-29

65
Hence O = 029 = 224K
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22:4

®) 224J/m01e—Kmespomkto3—-8—3iz-0898 From the graph this comresponds to
T L 250
e " 0-65 . This gives © = 065 - 385K

Then 80 K corresponds to é— = 0-208

The corresponding value of—i is 0-42 . Hence C = 10-5J/mole-K.

Ca
(c) We calculate © from the datum that C_ =075 at T = 125K.
Cl
The x—coordinate corresponding to 0-75 is 0-40. Hence
125
0= 04 - 3125K
Now kO =Th oy,
So Wpex = 409 x 10" rad/sec

6.192 We use the formula (6.4d)
e/T

4 3
1 (T x dx
U=9R0O §+(9) fé'-l
0

4 4 3
-9R9}-+ Ldx | (T (T fxdx
8 &-111© e &-1
0 e/T
In the limit T << ©, the third term in the bracket is exponentially small together with its

derivatives.
Then we can drop the last term

U= Const+—T‘ f xdx

oU aU T\3 Ldx
e e
aT), (2T, ) -1

0
Now from the table in the book
f 3dx_:t_
-1 15°
0

®
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6.193

6.195

5 |©e
Note :- Call the 3" term in the bracket above — Us. Then

4
S AN [
('3'(@) f2sinh(x/2) e dx

e/T

4 3
Thus CV = lz—n- (—1;)

3
The maximum value of —>—— is a finite +ve quantity C, for 0 £ x <. Thus

. . X
25mh2

T 4
Uss 2co(5) e o727

dU.
we see that U, is exponentially small as T—> 0. So is —d_}i .

At low temperatures C o T, This is also a test of the “lowness” of the temperature
We see that

13
C, T, 30
(C2) =14982~15-T2-20

Thus T3 law is obeyed and T, T, can we regarded low.

6.194

The total zero point energy of 1 mole of the solid is %R ©. Dividing this by the number of
modes 3N we get the average zero point energy per mode. It is

3
8k®.

In the Debye model
dN, = A’ Osw=sw,

A 3
Then 3N -de,, = ;)"' . (Total no. of modes is 3N)
0

9N
Thus A= .
wy
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9N o’ ho S :
we get U == | 5——do ignoring zero point energy
e"w/kT-1

(O

1

3
dx w
=9Nho f "——Jﬁ——, X = —
m eﬁu)mx/kT__l W,y
0

1

3
- 9R®f —x—/‘ﬂ—, © =thao,/k
o €971
3
Thus 9;9‘12?) = x for 0sxx<1
#o/T_q

e

For T=0/2, thisis ——; for
e -
e .. X . ; -
T = 2’ it is —~ . Plotting then we get the figures given in the answer.
e -

6.196 The maximum energy of the phonon is
hw, = kO = 284 meV

On substituting © = 330K.

To get the corresponding value of the maximum momentum we must know the dispersion
relation @ = w (kK’). For small (I?) we know @ = v |k_1 whese v is velocity of sound in the
crystal. For an order of magnitude estimate we continue to use this result for high | k]. Then
we estimate v from the values of the modulus of elasticity and density

.‘/E
v _V=

p
We write E_100GPa, p = 89 x 10’ kg/m’
Then v _3x 10° m/s

— h
Hence Bk |pax ~ %., 15x10 Y gmems™!
6.197 (a) From the formula
> w2
dn = EV?dE

e

the maximum value E_,, of E is determined in terms of n by
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E,

32
n= Vam fE”dE

7’

0

- V2 m*? 2 EY2
1,2 372
or B . (2—';) (32n)

> 3
Epox = m(3::’n)

(b) Mean KE. <E>is

B-rl Bﬂx
<E> -fEdn/fdn
0 0

E

K B—
2 2 3
-fEmd,E/wadE - gzﬁﬁ/ §Ef,{§ = = Eous
V] [\]

6.198 The fraction is

B_ B_‘

n -fEWdE/fEWdE =1-2"32 2 0646 or 646 %
1 0
2 Em

6.199 We calculate the concentration 7 of electron in the Na metal from
" 2 \2/3
EM‘EF-E(SR n)
we get from Eg = 3-07eV
n = 2:447 x 104 perc.c.
From this we get the number of electrons per one Na atom as

where p = density of Na, M = molar weight in gm of Na, N, = Avogadro number

we get
0-963 elecrons per one Na atom.



6.200 The mean KE. of electrons in a Fermi gas is ;EF . This must equal %kT. Thus

6.201

6.202

2Eg
T=%5%
We calculate Ep first. For Cu
Ny PN,y 2
n = M/o -V - 8-442 x 10” per c.c.
Then Ep = 7-01 eV
and T =325x10°K
We write the expression for the number of electrons as
3/2
dN = Z@Z— EV?dE
by

353

Hence if AE is the spacing between neighbouring levels near the Fermi level we must have

V VZ m¥?
e
(2 on the RHS is to take care of both spins f electrons). Thus
AE V2 n?* 4
Vm Ep

2 = EY?AE

But E,}/2 = L (32%*n)"”?
m
242
So AE= 2T 0
mV(3n°n)
Substituting the data we get

AE = 179x10"2evV
(a) From

ﬁ m3/2
o~

we get on using E = —mvz, dn(E) =dn(v)

3/2 3
ﬁzms mevmvdv = '2"3v2dv
Th Vo nh

12
—2-va = EF
= 0 for v>vg.

EV?dE

dn(E) =

N |-

dn(v) =

This holds for 0 <v <vgp where

and dn(v)
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(b) Mean velocity is

VF VF
3 2 3
<v>=fvdv/fvdv =3V
0 0

<V>

23
\/ 4'

6.203 Using the formula of the previous section
3

m__ 2
dn(v) = vidv
(v) 25

We put mv = 2z , where A = de Broglie wavelength

A
mdv = - 2:21' d\
Taking account of the fact that A decreases when v increases we write
@en’dr  8xm
dn(\) =-dn(v)=——F—.=—d\
N A
6.204 From the kinetic theory of gasses we know
- 2U
P=3vy

Here U is the total interval energy of the gas. This result is applicable to Fermi gas also

Nowat T =0
U=Uy=N<E> =nV<E>
S0 p=2n<E>
3
2 3 2
= §”x§EF . §"EF
*h

§im(3 )23 3
Substituting the values we get
p = 492 x 10* atmos
6.205 From Richardson’s equation
[ = aT?e **T

where A is the work function in eV. When T increases by A T, I increases to (1 + ) 1. Then
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AT A
n=2""+ o AT
Thus A=kr(2L_s
AT
Substituting we get A =448eV
6.206
outside o
1 o
A out
E ¥
F insicle

|

ineide . U0
The potential energy inside the metal is — U, for the electron and it related to the work

function A by

Uy = Ep+A
If T is the K.E. of electrons outside the metal, its K.E. inside the metal will be (E + Up) . On
cntering the metal electron connot experience any tangential force so the tangential component
of momentum is unchanged. Then

V2mTsina = V2m (T + Uy) sin

Hence
sina _ /. Uo " -
- = 1+ — = n by definition of refractive index.
sin B T

In sodium with one free electron per Na atom

n = 2:54x 10% per c.c.

EF = 315eV
A = 227eV (from table)
Uy = 542eV

n =102
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6.207 In a pure (intrinsic) semiconductor the conductivity is related to the temperature by the

6.208

6.209

following formula very closely :

g = ooe-At/2kT

where A ¢ is the energy gap between the top of valence band and the bottom of conduction
band; it is also the minimum energy required for the formation of electron-hole pair. The
conductivity increases with temperature and we have

Ae(1 1
T r,'i)
n=e
or Inn = _A_Fl_zé__Tl
"3k T,
H A 2kT1T2]
ence € T,-T, nm

Substitution gives
Ag = 0333eV =E_

The photoelectric threshold determines the band gap A & by
_2mhc
.

On the other hand the temperature coefficient of resistance is defined by (p is resistivity)

Ae

_ldp _d 4
< odT = ar™P = -grh°
where o is the conductivity. But
Ino =Ingy- Ae
T 0T kT

A€ nhc

a = - s = - = —0-047K™"
2kT k T2\,

Then

At high temperatures (small values of T~ ! most of the conductivity is infrinsic i.e. it is due
to the transition of electrons from the upper levels of the valance band into the lower levels
of conduction vands.

For this we can apply approximately the formula

E
o = apexp (_ ﬁsi)
E
or Inc = In o - ﬁ?
From this we get the band gap

Alno
Eg = -2k3a,m)




357

Alno
1
(7

At low temperatures (high values of -;—_- the conductance is mostly due to impurities. If E,

The slope must be calculated at small l. Evaluation gives - = 7000 K

T
Hence E;, = 121 eV

is the ionization energy of donor levels then we can write the approximate formula (valid at
Inw temperature)

' ' EO
o' =o' exp|-57F
Aln o’

*(7)

The slope must be calculated at low temperajures. Evaluation gives the slope

So Eo‘—2kT

_Almd’ _d 000K
ALy 3
Y
Then Ey _ 0057¢eV

6.210 We write the conductivity of the sample as o = 0; + O,
where o; = intrinsic conductivity and o, is the photo conductivity. At ¢ = 0, assuming
saturation we have
1 1 1 1
— =—+0, Of O = —-—
PP PL P
Time ¢ after light source is switched off

we have because of recombination of electron and holes in the sample

O =0;+0, e t’T
where T = mean lifetime of electrons and holes.
Thus — = —+ —_—-=
(PL P)
1 1 e !/T
or —_— —_— =
Pl
_l
or e:/T_-Pl P p2(p-p1)
_1_ 1 p1(p-p2)
P2 P
Hence " p2(p-p1)
p1(p-p2)

Substitution gives T = 9-87ms _ 0-01 sec
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6.211 +V ® B 0

— e Ey

«-—-—f{————

We shall ignore minority carriers.
Drifting holes experience a sideways force in the magnetic field and react by setting up a
Hall electric field E, to counterbalance it. Thus

Vu
VB = E, = "
If the concentration of carriers is n then
jx =nev,
Jx
Jx e V” jx h B

Hence "=V, THE "~ eV,
. . |4
Also using Je=0E ., =E /p = m
VhB
we get n = m

Substituting the data (note that in MKS units B = 5:0kG = 0-5T)
p=25x 10~2 ohm-m
we get n=49x10m3
= 499 x 10*° per cm®
e Vu 1 Vyl

Also the mobility is U= 5 = BXV = LBV
x

Substitution gives up = 005 m*/V -5
6.212
Q W
<«
Vx

If an electric field E, is present in a sample containing equal amounts of both electrons and
holes, the two drift in opposite directions.
In the presence of a magnetic field B, = B they set up Hall voltages in opposite directions.
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The net Hall electric field is given by
E, = (;-v;)B
= upup)E, B

E
But 2 = L Hence
E, m
_ 1
s -ul = =5
Substitution gives |u§ - ug | = 0-2 m?/volt - sec
¢ T
We x
Ey x E ®B
Ex

When the sample contains unequal number of carriers of both types whose mobilities are
different, static equilibrium (i.e. no transverse movement of either electron or holes) is
impossible in a magnetic field. The transverse electric field acts differently on electrons and
holes. If the E, that is set up is as shown, the et Lorentz force per unit charge (effective

transverse electric field) on electrons is

E,-v.B
and on holes

E,+v;B
(we are assuming B = B,). There is then a transverse drift of electrons and holes and the net
transverse current must vanish in equilibrium. Using mobility

ugN.e(E,-ugE,B) +Nyeug (E, + u4E,B) = 0

Nug®-Nug®

or E, = - "
N_ug + Ny uy

y

E.B

On the other hand

Je = (Noug +Nyug ) e E,
Thus, the Hall coefficient is
E, 1N.ug?-Nyu;?
TR s (NN )

We see that Ry = 0 when
2
N, (uw 1 1

N, ug n




360
6.5 RADIOACTIVITY

6.214 (a) The probability of survival (i.e. not decaying) in time ¢ is e~ ™ Hence the probability of
decay is 1 -e™**

(b) The probability that the particle decays in time dt around time ¢ is the difference
e-k‘ _ e-k(“f‘d‘) = e-k‘[]. _e-ekdc] = Ke-l‘dt

Therefore the mean life time is

_ -At -At _!-_ -x -x =l
T_fme d:/fxe dt-)‘fxe dx/fe dx =3
0 0 0 0

6.215 We calculate A first
In2

A = o= = 9722 x 10~ per day
Ty,
Hence
fraction decaying in a month =1-e*=0253

6.216 Here N, = 12“: gg x 6023 x 102 = 251 x 10"

Also A= 2 = 0-04621 per hour
Ty,

So the number of f rays emitted in one hour is

No(1-e™*) = 113x10%

6.217 If N, is the number of radionuclei present initially, then
Nl = No (1 -e"‘/')

NN, = Ny(1-e™%%)

where 7 = 266 and t;, = 3 ¢;. Then
1-e 7"
= l_e-‘l/‘l
or n_ne-tl/t - l_e-t/t

Substituting the values

166 = 266" Y —e %"

U

Put e”“" = x. Then

X -266x+166 =0
®-1)x-166(x-1) = 0
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or x-1)(P+x-166) = 0
Now xm=1sox+x-166 = 0

-1xV1+4x166

X =
2
Negative sign has to be rejected as x >0.
Thus x = 0-882
- -2
This gives T =088 - 159 sec.
If the half-life is T days
~yr 1
7 In2S5

Hence T = o2

71n
or T = 25 -530days

The activity is proportional to the number of parent nuclei (assuming that the daughter is not
radioactive). In half its half-life period, the number of parent nucli decreases by a factor

@V - L

V2

So activity decreases to % = 460 particles per minute.
2

If the decay constant (m (hour)” 1) is A, then the activity after one hour will decrease by a
factor e *. Hence

096 = e~ *
or A = 111 x10 %5 = 0:0408 per hour

The mean life time is 24-5 hour

Here N, = 73§><6023><10”

= 2:531 x 102
The activity is A = 124 x 10* dis/sec .

Then )..-—4—-490x10 18persec.
No

Hence the half life is
In2

T = T = 4:49 x 109 years
1 /
2
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6.222

6.223

6.224

6.225

In old wooden atoms the number of C'* nuclei steadily decreases because of radioactive decay.

(In live trees biological processes keep replenishing ™ nuclei maintaining a balance. This
balance starts getting disrupted as soon as the tree is felled.)

2

If T, is the half life of C'* then e T - 5

Hence t = Tl,z-anS—;-:i = 4105 years m 4-1 x 10° years

What this implies is that in the time since the ore was formed, ﬁ;‘- U2 nuclei have remained

undecayed. Thus

or t=1T

Substituting T, = 45 x 10 years, 1 = 2:8
2

we get t = 198 x 10° years.

The specific activity of Na* is

x% - %‘;12 = 322 x 10 dis/(gm.sec)
2
Here M = molar weight of Nau = 24gm , N, is Avogadro number & T, is the half-life of
Na?. i
Similarly the specific activity of U>” is
6023 x 102 x1In 2
235 x 10° x 365 x 86400

= 0793 x 10° dis/(gm-s)

Let V = volume of blood in the body of the human being. Then the total activity of the blood
is A’ V. Assuming all this activity is due to the injected Na? and taking account of the decay
of this radionuclide, we get

VA' =Ae™™

Now A= %pcrhour, t = S hour
) 3
Thus v demms | 20x10° k230 505 it

a = (16/60) ¢
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We see that
Specific activity of the sample

= M—: ” {Activity of M gm of Co™® in the sample}
Here M and M’ are the masses of Co® and Co” in the sample. Now activity of M gm of
Co®

In2

M . B3 __ In2 .
58x6023x10 x71_3x86400d1s/sec

= 1168 x10° M

Thus from the problem

M

. 12
Wil 22x10

1-168 x 10

M

o -3 . N
Ml 1-88 x 10 i.e. 0:188 %

or

Suppose N;, N, are the initial number of component nuclei whose decay constants are
A, A (in (hour)~ 1)
Then the activity at any instant is

A=MNe M eMNe ™'
The activity so defined is in units dis/hour. We assume that data In A given is of its natural
logarithm. The daughter nuclei are assumed nonradioactive.

We see from the data that at large t the change in In A per hour of elapsed time is constant
and equal to — 0-07. Thus

A, = 0-07 per hour
We can then see that the best fit to data is obtained by
A(D) = 5117 %%/ 41007 °7"

[To get the fit we calculate A (1‘)»e007 . We see that it reaches the constant value 10-0 at
t = 7,10, 14, 20 very nearly. This fixes the second term. The first term is then obtained by

subtracting out the constant value 10-0 from each value of A () e”7" in the data for small

t]
Thus we get A, = 0-66 per hour

= 10
h=1 5h°"'} half-lives

T, = 99 hours
. Ny 511 M
Ratio N, = 100%% - 054

The answer given in the book is misleading.
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6.228 Production of the nucleus is governed by the equation

We see that N will approach a constant value i— . This can also be proved directly. Multiply

by "’ and write

-‘;—Ne"%ke)"N =ge*
Then i1~(Ne"') =ge™
dt
or Net = 1;‘:e"'+const

At t = 0 when the production is starteed, N = 0

0= §-+ constant

Hence N = i—(l-e'“)

Now the activity is
A=AN=g(l-e?)
From the problem

1 -At
—277- 1-¢
This gives At = 0-463
0463 0463 xT
= = = ‘S d .
S0 t X 0693 9-5 days
. T A
Algebraically t = — -~ In (1 - g)
6.229 (a) Suppose N; and N, are the number of two radionuclides A, , A, at time ¢. Then
dN,
- = MM Y]
dN,
— = MNi= 2N @

From (1)

Ny = Nye™*
where Ny is the initial number of nuclides A; at time t = 0
From (2)
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dN
MN
Mty o 110 -0y -2)e
or (Nye™") = const ——— M-M 1
since N,=0 at t=0
A Ny
Constant N, =
M-
)»1N1o o
Thus Rt _gM!
M( )

(b) The activity of nuclide A, is A, N, . This is maximum when N, is maximum. That hap-

. dN; 0
pens when —= =

This requires Moe M= p e M
In(Ay/
or L)
M-
6.230 (a) This case can be obtained from the previous one on putting
Mo=-
where € is very small and letting € —> 0 at the end. Then
M Ny
€

N2 = (e.‘—l)e-)‘"= klte-kl‘Nlo
or dropping the subscript 1 as the two values are equal
N2 = Nmkte-m

(b) This is maximum when

6.231 Here we have the equations

e WA

dN. dN;
72 = MN =N, and —2 = LN

From problem 229

- “hpt _ L =Ayt
M=, ’
dN. MA - -

Then 73 = )‘;_):2— Nlo(e xz‘_e }'-1‘)
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6.232

6.233

A -yt -\t
or N; = Const — 122 ("’ € )Nm

since N3 = 0 initially

MMNG[1 - 1 -
SO N = 1 A’l‘ —— 1 l‘
3 A’l-l’l M( ) A‘l( )
Kle M‘—Me-kl‘
= Npll+
10[ )"2-;"1
We have the chain
B2 A.B — p3° @, pws
1
Al A2 A3

of the previous problem initially
-3

23 . 18
10 x 6:023 x 10 2:87x 10

Ny =

A month after preparation
N; = 454x10%
N, = 2:52x 10%®
using the results of the previous problem.
Then Ap = MN; = 0725 x 10" dis/sec

Ay = M N, = 1-46 x 10™ dis/sec

(a) RahasZ = 88, A = 226
After S a emission and 4 f (electron) emission
A = 206
Z=88+4-5x2 =82
The product is 82 pp 2%

(b) We require
-AZ=10=2n-m
~-AA =32 =nx4
Here n = no. of o emissions
m = no. of P emissions
Thus n=8 m==6
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6.234 The momentum of the a-particle is
m . This is also the recoil momentum of the daughter nuclear in opposite direction.
The recoil velocity of the daughter nucleus is

\/2M 2 2T

s
Md 196 p = 339%x10°m/s

M,
The energy of the daughter nucleus is —= T and this represents a fraction

M,
Ma/M, M, 4 1 002
M,  M,+M; 200 50
1+—
M,

of total energy. Here M, is the mass of the daughter nucleus.
6.235 The number of nuclei initially present is

1073 18
>0 %6023 x102 = 2:87x10

In thg'a mean life time of these nuclei the number decaying is the fraction 1 - %—- 0:632. Thus

the energy released is
287x10® x 0632 x 53 x1602x 10 B J .= 1:54 M J

6.236 We neglect all recoil effects. Then the following diagram gives the energy of the gamma ray
Pr210

Excitedstate
T 0.80MeY

Ind State}Pb
6.237 (a) For an alpha particle with initial K.E. 7-0 MeV, the initial velocity is

'\/2T
Vo = -

M,

2x7x1602x10~°
4x1672x10"%

= 1-83 x 10° cm/sec
Thus R = 602cm
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6.233

6.239

(b) Over the whole path the number of ion pairs is

7 x 10°

33 206 x 10°

Over the first half of the path :- We write the formula for the mean path as Ra E 2
where E is the initial energy. Thus if the energy of the a—particle after traversing the
first half of the path is E; then

RyE}? = %ROEO”’ or E, = 2'”{50
Hence number of ion pairs formed in the first half of the path length is
Ey-E
= = (1-2"%?)x 206 x 10° = 076 x 10°

In B~ decay
¥ >, YAre+Q
Q = (M,-M,-m,)c’
- [(M,+Zm,)-(My+Zm +m,)]c’
- (M,-M;) ¢’
since M, , M, are the masses of the atoms. The binding energy of the electrons in ignored.
In K capture
e+ X2 Y44 Q
Q= (1¥{X—A{}r)c2+m,r:2
- (M:2+Zm,c2)—(Myc2+(Z—1)m¢c2)
- (M, - M)
In B* decay XA =, Y+ Q
Then Q= M,-M,-m,)c*
= M, +Zm, ] -[My+(Z-1)m, ] -2m,c"
= (MI,—M,,-Zm,)c2
The reaction is Be'® =BV 4+ ¢ 47,

For maximum K.E. of electrons we can put the energy of v, to be zero. The atomic masses
are

Be'® = 10016711 amu
B! = 10-016114 amu
So the K.E. of electrons is (see previous problem)
597 x 10 "% amu x ¢* = 0-56 MeV
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MeV

The momentum of electrons with this K.E. is 0-941

and the recoil energy of the daughter is

(0941 (0-941)°
2xM,c? 2x10x938

MeV = 472eV

The masses are
Na* = 24 -0:00903 amu and Mg % = 24 -0-01496 amu
The reaction is
Na** —>Mg* +e +7,
The maximum K.E. of clectrons is
0-00593 x 93 MeV = 5:52 MeV
5-52

Avcrage K.E. according to the problem is then = = 1-84 MeV

The initial number of Na?* is

1073 x 6023 x 102

19
24 :251x10

The fraction decaying in a day is

1-(2) %" = 067
Hence the heat produced in a day is
067 x 2:51 x 10" x 1-84 x 1-602 x 10~ Joul = 495 MJ

We assume that the parent nucleus is at rest. Then since the daughter nucleus does not recoil,
we have

— —»
P =-p

i.e. positron & v mometum are equal and opposite. On the other hand

Ve p2 + mf Y p = Q = total energy released. (Here we have used the fact that energy
of the neutrino is ¢ |py| = cp)
Now Q = [( Mass of cl nucleus) - (Mass of B"nucleus) ] c*

= [ Mass of ¢! atom - Mass of B! atom - m, ] ?

= (-00213 amu x - m, c

= (0:00213 x 931 - 0-511) MeV = 1-47 MeV
Then ’p*+(0-511)? = (147 - c p)* = (1-47)? =294 c p + ¢ p*

Thus cp = 0:646 MeV = energy of neutrino
Also K.E. of electron = 1:47 - 0:646 - 0-511 = 0-313 MeV
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The KE. of the positron is maximum when the energy of neutrino is zero. Since the recoil
energy of the nucleus is quite small, it can be calculated by successive approximation.
The reaction is

NP —=CBie +v,.
The maximum energy available to the positron (including its rest energy) is
¢? (Mass of NPnucleus - Mass of C*> nucleus)

c? (Mass of N* atom - Mass of C** atom - m,)

= 000239 ¢* - m, c*

(0-00239 x 931 - 0-511) MeV

171 MeV

The momentum corresponding to this energy is 1:636 MeV/c.

The recoil energy of the nucleus is then

2 2
N 2 (1-636 - -0
E AM - Ix13x931 111 eV = 0-111 keV

on using Mc? = 13 x 931 MeV

The process is
e;+Be7—*Li7+v
The energy available in the process is
Q = ¢* (Mass of Be’ atom - Mass of Li’ atom)
= 0-00092 x 931 MeV = 0-86 MeV
The momentum of a K electron is negligible. So in the rest frame of the Be’ atom, most of
the energy is taken by neutrino whose momentum is very nearly 0-86 MeV/c
The momentum of the recoiling nucleus is equal and opposite. The velocity of recoil is

0-86 MeV/c 0-86

. 6
M, c><7x931 396 x 10" cm/s

In internal conversion, the total energy is used to knock out X electrons. The KE. of these
electrons is energy available-B.E. of K electrons
= (87 -26) = 61keV

The total energy including rest mass of electrons is 0-511 + 0-061 = 0-572 MeV
The momentum corresponding to this total energy is

\'4 (0:572)% - (0-511)? /¢ = 0257 MeV/c.

2
o <p_ 0257 _ ..
The velocity is then E €X 057 0449 c
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With recoil neglected, the y—quantrum will have 129 keV energy. To a first approximation,
its momentrum will be 129 keV/c and the energy of recoil will be

o2
0129) _ MeV = 418 x 10~3 MeV

2 x 191 x 931
In the next approximation we therefore write E, =129 - 8-2 x 10 "8 MeV
OF
Therefore - = 363x 1077

Y

For maximum (resonant) absorption, the absorbing nucleus must be moving with enough speed
to cancel the momentum of the oncoming photon and have just right energy
(e = 129 keV ) available for transition to the excited state.

< ﬁk’\/\/\,z\r* é—o
recoil Ex-8Ey V

energy=dJky !

82

Since S E, = 5 and momentum of the photon is % , these condition can be satisfied if

Mc?
the velocity of the nucleus is
3 3
Me = cMc2 = 218 m/s = 0218 k m/s
Because of the gravitational shift the frequency of the gamma ray at the location of the
absorber is increased by
do _gh
o 2
For this to be compensated by the Doppler shift (assuming that resonant absorption is possible
in the absence of gravitational field) we must have
M-! or v-g-c-,!--0-65um/s

c? ¢

The natural life time is

T = '-:’- = 47x10" eV

Thus the condition  E, = T implies 57": L.»
c € TE
h
or hz —— = 4-64 metre
Teg

(h here is height of the place, not planck’s constant.)
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6.6 NUCLEAR REACTIONS

6.249

6.250

Initial momentum of the o particle is m"l (where I is a unit vector in the incident
direction). Final momenta are respectively p,, and Ef,- . Conservation of momentum reads
Patbn=V2mT, i

Squaring p?, +p,2_,- +2p,pLicos® =2mT, (1)
where O is the angle between p_,: and 17Li .

i n
2m 2IM T
(m & M are respectively the masses of a particle and L .) So

Also by energy conservation T,

m
P§+A—4-p§.- =2mI, @)
Substracting (2) from (1) we see that
m
pL,-[(l—A—l)pLﬁZpucos @] =0
Thus if Dri > 0

1 m
Po = —5(1 -A—l)puscc@.
Since p,, p;; are both positive number (being magnitudes of vectors) we must have
-1<cos©<0 if m<M.

This being understood, we write
2

2
PLi [1+-£(1——’ﬁ) sec’ @ =T,

2M 4m M
Hence the recoil energy of the L; nucleus is

2
PLi T,
2M -m)?

l+(M m sec’ @
4mM

As we pointed out above © = 60°. If we take ® = 120°, we get
recoil energy of Li = 6 MeV

(a) In a head on collision

V2mT = p;+p,
2
Pi Pr
2M 2m
Where p,; and p, are the momenta of deuteron and neutron after the collision. Squaring

Pi+Pa+2pip, =2mT

T=
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m

Mp?, =2mT

pi+

or since p;= 0 in a head on collisions
_Lfm

Pn 2 M Pa-

Going back to energy conservation
2

2
Pa M m
2M[1+4m(1'M) ] =T

So i _ . 4AmM
2M (m'+ M)
This is the energy lost by neutron. So the fraction of energy lost is
- AmM 8
N ey 7O

(b) In this case neutron is scattered by 90°. Then
we have from the diagram

p_;-p,,}-rVZmTAi ->

Then by energy conservation 3\
p,2,+2mT p,z, T
2M T2m .
2 —O >
or 2147 - pf1-2) 3
2m{" M M) vemT 1 A
or pﬁ _M-m T %J
2m  M+m
The energy lost by neutron in then
_Pa _ 2m
2m M+m
. . 2m 2
or fraction of energy lostis m = Mem =3

6.251 From conservation of momentum
V2MT i = pj+p,
orp§=2MT+p,2,—2V2MTpdcosB

From energy conservation

roPi, P
2M 2m
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6.252

6.253

(M = mass of denteron, m = mass of proton)

So p = 2mT—A—!pd
Hence p3(1+%)—2\/2MTp,,cos9+2(M—m)T=0
For real roots 4(2MT)cos29-4x2(M—m)T(1+Aﬂl)z 0
2
coszﬁz(l—;";;)
m2
Hence sin2esF
i.e. 0s sin'li—"{-

For deuteron-proton scaltering 6p,,, = 30°.

This problem has a misprint. Actually the radius R of a nucleus is given by

R=13 VA fm
where fm = 16-% m
Then the number of nucleous per unit volume is
. : T (13) 3% 10 cm™ = 1:09 x 10® per cc
=R

The correspondmg mass density is

(1-09 x 10°® x mass of a nucleon) per cc = 1-82 x 10" kg/cc

(a) The particle x must carry two nucleons and a unit of positive charge.
The reaction is

B°(d,a)B}

(b) The particle x must contain a proton in addition to the constituents of O". Thus the
reaction is
oV d,n) F8

(c) The particle x must carry nucleon number 4 and two units of +ve charge. Thus the particle
must be x = o and the reaction is

3 (p, o) Ne®

(d) The particle x must carry mass number 37 and have one unit less of positive charge.

Thus x = CI*7 and the reaction is
cr¥ @, n)Ar37



6.254 From the basic formula
Ey=Zmy+(A-Z)m,-M
We define Ay = my—-1amu
A, = m,-1amu
A=M-Aamu
Then clearly E, = ZAy+(A-Z)A,-A

6.255 The mass number of the given nucleus must be

27/ (3)3 -8
2
Thus the nucleus is Be®, Then the binding energy is
E, = 4 x 0-00867 + 4 + x 0-00783 - 0-00531 amu

= 006069 amu = 56-5 MeV
On using 1 amu = 931 MeV.

6.256 (a) Total binding energy of the 0 nucleus is
E, = 8 x 00867 + 8 x ‘00783 + 0-00509 amu

= 0-13709 amu = 127-6 MeV
So B.E. per nucleon is 7-98 Mev/nucleon

(b) B.E. of neutron in B Ynucleus
= BE. of B!-BE. of BY
(since on removing a neutron from B! we get BY )
= A, Ag +Ap = 00867 - 00930 + 01294
= 001231 amu = 11-46 MeV
B.E. of ( an a-particle in B'')
= BE. of B' - BE. of Li’ - BE. of o

(since on removing an o, from B we get Li )
- — Anu +4Ap; + A
= - 0-00930 + 0-01601 + 0-00260
= 0-00931 amu = 867 MeV

(c) This cnergy is

[B.E. of 0" + 4 (BE. of a particles)]
-Ap+4 A,
4 x 0-00260 + 0-00509
0-01549 amu = 14-42 MeV

375
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6.257

6.258

6.259

6.260

6.261

B.E. of a neutron in B™ - B.E. of a proton in B!
= (A -Ag"+Ag°) (A, —Agt+Ag")
= A, - A, +Ag° - Ag® = 000867 - 0-00783
+ 001294 - 001354 = 0-00024 amu = 0-223 MeV
The difference in binding energy is essentially due to the coulomb repulsion between the
proton and the residual nucleus Be'® which together constitute B,
Required energy is sﬁnply the difference in total binding energies-
= BE. of N’ -2 (BE. of He') - BE. of C*
= 20¢ey,-8¢,-12¢¢
(e is binding energy per unit nucleon.)

Substitution gives 11-88 MeV.
(a) We have for L

41:3MeV = 0:044361 amu = 3A,;+5A,-A

Hence A = 3x0-00783 + S x 0-00867 — 009436 = 0-02248 amu

(b) For c*° 10 x 604 = 60-4 MeV
= 0-06488 amu

=6Ay+4A,-A
Hence A = 6 x 0-00783 + 4 x 0-00867 — 0-06488 = 0-01678 amu
Hence the mass of C'° is 10-01678 amu

Suppose M, , M, , M;, M, are the rest masses of the nuclei A;, A,, A3 and A, perticipating
in the reaction
A +A) A3 +A,+Q
Here Q is the energy released. Then by conservation of energy.
Q = (M, + My - My - M,)
Now M, c? = 2z, my+ (A -Z)m,)-E, etc. and
Zy +2Z, = Z3 + Zy(conservation of change)
Ay +A; = Ay + A, (conservation of heavy particles)
Hence Q =(Es+E))-(E,+E))

(a) the energy liberated in the fission of 1 kg of U 35 s

120;)50 x 6023 x 10% x 200 MeV = 821 x 10° kJ

The mass of coal with equivalent calorific value is

821 x 10'°
30000 X8

= 274x10° kg
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(b) The required mass’is
30 x 10° x 4-1 x 10° 235
x kg = 149k
200 x 1602 x 10- 2 x 6:023 x 10° - 1000 ‘& ¢

6.262 The reaction is (in effect).
H*+H* — He* + Q
Then Q =2A2 -Ayt+Q
= 0-02820 - 0-00260
= 0-02560 amu = 23-8 MeV
Hence the energy released in 1 gm of He' is

6023 x 102
4

This energy can be derived from

575 x 10
30000

x238x1602x 102 Joule = 575 x 108 kJ

kg = 1'9 x 10* kg of Coal.

6.263 The energy released in the reaction
Li® + H* — 2 Heé*
is Ap+ Ap -2 Ay
= 0-01513 + 0-01410 - 2 x 0-00 260 amu
= 0-02403 amu = 2237 MeV

(This result for change in B.E. is correct because the contribution of A, & Ay cancels out by
conservation law for protons & neutrons.)-

Energy per nucleon is then
22:37

= 2796 MeV/nucleon .

This should be compared with the value 00 _ 0-85 MeV/nucleon

235
6.264 The energy of reaction
Li"+p—>2He*
is, 2xBE. of He* -BE. of Li’

=8¢,-T¢, = 8x706-7x560 = 173 MeV

6.265 The reaction is N**(a., p) 0.
It is given that (in the Lab frame where N'* is at rest) T, = 40 MeV .
The momentum of incident o particle is
V2m T, i = V2nomT, i
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The momentum of outgoing proton is
‘/'ij(cose'hsine'}')
= V—Z—m(cosﬂﬁhsinﬂ’}')

A
m me, ‘[‘
where np=;§’ na=m_0r J

and m, is the mass of o".
The momentum of O is
(\/2num0 T, -\/ZanOTp cos B) [
N ﬁ—m sin 0 ’}
By energy conservation (conservation of energy including rest mass energy and kinetic energy)

My, c2+Mu c2+Tu

=M, c*+T,+Myc’

+[(\/ﬁ—m;cos 9)2 +inpsin29+inpsin29]
Hence by definition of the Q of reaction
0 = My G+ M, -M,c* -My; ¢’
= T4 Ma Ta+Mp T, -2V, Mg To T, x cOs 0 - T,
=1+m) T, +T,(1-m,)
-2V M, T, T, cos 8 = - 119 MeV
6.266 (a) The reaction is Li 7(p,n)Be” and the energy of reaction is
Q = Mp'+M7) " +(M,-M,)
= (Au,-Ap’) S+, - A,
= [0-01601 + 000783 - 0-01693 — 0-00867] amu x c*
= - 164 MeV

(b) The reaction is Be® (n, ) Be'.
Mass of y is taken zero. Then

Q = (Mp2+ M, -Mp,0)
= (Mgl + A, - Ag,") e
= (0-01219 + 0-00867 - 0-01354 ) { amu % ¢
= 6:81 MeV
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6.268

6.269
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(c) The reaction is Li’ (., n) B'. The energy is
0 = (A" + A=A, =Ag®)
= (001601 + 0-00260 — 0-00867 — 01294 ) amu x ¢
= -279 MeV

(d) The reaction is 0" (d, o) N*. The energy of reaction is
Q = (A*+ 8- 8- 83
= (- 000509 + 0-01410 - 0-00260 — 0-00307) amu x ¢
= 3-11 MeV

The reaction is B® (n, o) Li”. The energy of the reaction is
0 = (Ag°+ A, -8 - By7)
= (0-01294 + 0-00867 - 0-00260 - 0-01601) amu x c*
= 279 MeV
Since the incident neutron is very slow and B s stationary, the final total momentum must

also be zero. So the reaction products must emerge in opposite directions. If their speeds are,
repectively, v, and v;;

then 4v, = Tvy;
*and %(4 V24 7vE)x1:672x 1072 = 279 x 1-602 x 10”°
So —;-x 4v2 (1 + %) = 270 x 10" em?/s?
or Vg = 927 x 10°m/s
Then vy = 53x10°m/s

Q of this reaction (Li7 (,n Be' ) was calculated in problem 266 (a). If is — 1-64 MeV.
We have by conservation of momentum and energy p, = pp, (since initial Li and final ncutron

are both at rest)

2 2
Pp . PBe_ + 164
2 m’ 2 my;

P
Then —L(l——Lm ) = 1-64
2m, mg,
P17
Hence T, = 72 = —x164MeV = 191 MeV
2m, 6

It is understood that Beé’ is initially at rest. The moment of the outgoing neutron is
V2m,T, '} The momenturm of C*? is
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V2m, T 1-V2m, T, J

n (\/2777777?13\)

Then by energy conservation
/ N
. T 2m, T+2m,T, 2mL& T
+Q- nt 2mci &;
(m, is the mass of C'2) ol Be? /
c2
Thus T, = m. (T+Q)-m, T
m.+m,
md
: Q+(1_—m—)(T
m.,-my) T +m, c
Jmeom)T4mQ = 852 MeV
m,+m, m,
1+—
m&‘

6.270 The Q value of the reaction Li’ (p, o) He* is
Q = (A" +8y-24y1) ¢
= (0-01601 +0-00783 — 0-00520) amu x ¢’
= 0-01864 amu x ¢? = 17:35 MeV

Since the direction of He* nuclei is symmetrical, their momenta must also be equal. Let T
be the K.E. of each He*. Then

P = 2V2m”,Tcosg

(p, is the momentum of proton). Also

P
L340 =2T=T,+Q

2m,
pisec’s
Hence TP+Q = 2-—8—';;:—

M .28
- szmHesec 2

6 m T

Hence cos 3= i Tp +0

Substitution gives
0 = 170-53°

(T, +Q) = 918 MeV.

[ S

Also T =



6.271

6.272

6.273

6.274

6.275
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Energy required is minimum when the reaction products all move in the direction of the
incident particle with the same velocity (so that the combination is at rest in the centre of

mass frame). We then have
V2mT, = m+M)v

(Total mass is constant in the nonrelativistic limit).

1 2 mT,
Ta-1Q] = s (m+M)V* = =2
. M
or Ta M - Q]
m

Hence Ty = (1 +M)|Q|
The result of the previous problem applies and we find that energy required to split a deuteron

M,
is Tz [1+-L|E, = 3:3MeV

M,

Since the reaction Li’ (p,n)Be’ (Q = - 165 MeV) is initiated, the incident proton energy
must be

M,
2|1+—5|x1:65 = 1:89 MeV
My;
since the reaction Be® (,n B (Q = -1-85MeV) is not initiated,

M,
Ts (1 + —L) x1:85 = 206 MeV Thus 1-89 MeV < T, < 2:06 MeV

My,
my
MB“ ) l Q |

or Q= -i—;—x4MeV = —3.67 MeV

We have 40 = (1 +

The Q of the reaction Li’ @,n) Be” was calculated in problem 266 (a). It is — 1-64 MeV
Hence, the threshold K.E. of protons for initiating this reaction is

T, = (1+—'—"L)|Q| - 8164 = 187 Mev
my; 7

For the reaction Li’ @, d)Li®

we find 0 = (A" + Dy -Dy-B,%)
= (0-01601 + 0-00783 — 0-01410 - 0-01513) amu x t':2
= - 502 MeV

The threshold proton energy for initiating this reaction is

m
Ty = (1 +-";£;]x|g| = 573 MeV
'Li
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6.276 The Q of Li 7 (o, m) B was calculated in problem 266 (c). It is Q = 2-79 MeV
Then the threshold energy of a-—particle is

my 4
T, = (1+——)|Q| - (1 +—)2-79 = 438MeV
my; 7

The velocity of B™ in this case is simply the volocity of centre of mass :-

V=\'2mmT,,, - 1 “/2Tu.

my+my; 1+_”1Li my
a

This is because both B'® and n are at rest in the CM frame at theshold.

Substituting the values of various quantities

we get v = 527x10%m/s
6.277 The momentum of incident neutron is V2 m, T i, that of o particle is V2 m, T, J and of
Be® is
-V2m, T, j+\/2m,,TAi N
By conservation of energy eC J
meT,+m,T
T=T +—4=2 " , I Ql
a M n N
. 9 O—> 2
(M is the mass of Be” ). Thus ~ 5
C
m, M
= [T|{1-—|- .
T - 7[5 le] s
Usi T . m,,\l | Beq
sing m=|1+ M} Q
M m, Tlh

we get Ta—M“”a (I—M)T-1 -y

+

M

M is the mass of C ' nucleus.

1
M+m,

MM
M+m,

or T, = [ M-m,)T- T,,,] = 221 MeV

6.278 The formula of problem 6.271 does not apply here because the photon is always reletivistic.
E
At threshold, the energy of the photon E, implies a momentum ?’ The velocity of centre of

mass with respect to the rest frame of initial H? is

_ &

(m,+my)c
Since both n & p are at rest in CM frame at threshold, we write
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6.280
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2
Ey
v= a2tk
2 (m,+m )c
by conservation of energy. Since the first term is a small correction, we have

E}

ExE+ —m—
vooh 2(’"n+'"p)"'2

SE E, 22

. -4
E_ = 2(mn+mp)c2 = 2x2x938 = 59x10

Thus

or nearly 0-06 % .

The reaction is
p+d—>He 3

Excitation energy of He? is just the energy available in centre of mass. The velocity of the

centre of mass is
V2 mpr _ 17 / 2T,
3

mp + my
In the CM frame, the kinetic energy available is (md ~2my,)
2 2
. _\/2T Jlo (1V2I | 2T
2™ m, 277713 " m, 3
. . 2T
The total energy available is then Q + 3
where 0 =c*(A,+4A,- Ad)
= ¢* x (000783 + 0-01410 - 0-01603) amu
= 549 MeV
Finally E = 649 MeV .

The reaction is
d+CB—>NB* > ni N

Maxima of yields determine the energy levels of N 3¢ As in the previous problem the
excitation energy is

o = Q+Eg
where Eg = available kinetic energy. This is found is as in the previous problem. The velocity

of the centre of mass is

V2m,T; ™ \[2T

m;+m, mg;+m, my
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o2 2
So Eg = Lm[1-—28_ 2% +lm (2 2L _m
2 my+m.| my; 2 myg+m.) m; my+m,

Q is the Q value for the ground state of N 15 ; We have
Q = c*x (Bu+ A - AY)
= ¢? x (0:01410 + 0-00335 — 0-00011) amu
= 16-14 MeV
The excitation energies then are
1666 MeV , 16:92 MeV
1749 MeV and 17-70 MeV.
6.281 We have the relation

= e-ncd

1
n

Here — = attenuation factor

x 3|+~
]

no. of Cd nuclei per unit volume
effective cross section
thickness of the plate

a Q
non

pN,
Now n = o

{p = density, M = Molar weight of Cd, N, = Avogadro number.)

Thus o

M
= pNAdlnn = 2:53kb
6.282 Here

1 e-('lgdﬁ'ﬂla‘)d

n
where 1 refers to O and 2 to D nuclei

Using n, = 2n, n; = n = concentration of O nuclei in heavy water we get

_1_ - e-(2az+al)nd
n
Now using the data for heavy water
o 11x6023x10%
20

= 3313 x 10% per cc

Thus substituting the values

20-4 = 1
‘n= =1.
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6.283 In traversing a distance d the fraction which is either scattered or absorbed is clearly

1- e-n(a,q»a.)d

by the usual definition of the attenuation factor. Of this, the fraction scattered is (by definition
of scattering and absorption cross section)

W = [1 _e-n(a,-ba‘)d} Os
—— Os + O,
x N,
In iron n= P—M-—A- = 839 x 102 per cc
Substitution gives w =0-352
6.284 (a) Assuming of course, that each reaction produces a radio nuclide of the same type, the

®)

6.285 (a)

®)

decay constant a of the radionuclide is k/w. Hence T = —hiz = %ln 2

number of bombarding particles is : I?t

(e = charge on proton). Then the number of Be' produced is : —Ie—tw

If A = decay constant of Be' = lﬂrz, then the activity is A = I?tw.l_nT_Z
eAT -3
Hence il e 1-98 x 10

Suppose Ny = no. of Au 197

formed in time ¢ is

nuclei in the foil. Then the number of Au'®’ nuclei trans-

No'J'U't

For this to equal n} Ny , we must have
t =n/{J#0) = 323 years

Rate of formation of the Au'®® nuclei is Np-J - o per sec

and rate of decay is A n, where n is the number of Au 198 a1 any instant.
dn
Thus —‘—h—-no-.l-o—)‘.n

The maximum number of Au*®

is clearly
No‘]'o No‘.I‘U'T
Mmax =TT T
dn
dr

because if n is smaller, >0 and n will increase further and if n is larger

%< 0 and n will decrease. (Actually n,, is approached steadily as 1 —> )

Substitution gives using Ny = 3057 x 10", n,,. = 1-01x 10"
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6.286 Rate of formation of the radionuclide is nJJ-o per unit area per-sec. Rate of decay is AN.

Thus
dN .
e nJ-c - AN per unit area per second
Then (%—+AN) e* = nroert or %(Ne"') = nJ-oe*
Hence Ne*' = Const+ n-.;-o et
The number of radionuclide at ¢ = O when the process starts is zero. So constant = — ".Jx.o

Then N = %q(l—e'“)

6.287 We apply the formula of the previous problem except that have
N = no. of radio nuclide and no. of host nuclei originally.

Here ne fg;?, x 6023 % 102 = 6-115 x 10%
JoT b2
Then after time ¢ N = n.lnc; (1 -e T )

T = half life of the radionuclide.
After the source of neutrons is cut off the activity after time T will be

nJ-oT _ _ In2
- (1 - e~ "2¥T) ¥ VT

-¢tln2/T -tln2/T
e
In2 )

=nJo(l-e

Thus J = Ae'lnvr/no(l—e"ln?ﬂ) = 592 x 10° part/cm? s
6.288 No. of nuclei in the first generation = No. of nuclei initially = N,
Ny in the second generation = N, » multiplication factor =N, - k
N in the the 3rd generation = Ny -k-k = Nok2
Nj in the nth generation = Nok" ™!
Substitution gives 1-25 x 10° neutrons
6.289 N, of fissions per unit time is clearly P/E. Hence no. of neutrons produced per unit time to

VE—P. Substitution gives 7-:80 x 10 18 neutrons/sec

6.290 (a) This number is k"~ where n = no. of generations in time ¢ = ¢/T
Substitution gives 388.
. (5- 1) Ink
(b) We write K" = e\ =e

T 1 1
or 1—1—lnk and T=1(1+]nk)—10155ec
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6.7 ELEMENTARY PARTICLES

6.291

6.292

6.293

The formula is
T =Vp*+mic* -myc?

Thus T = 53MeV for p = 0-10%’ = 53x10"2GeV

T = 0433GeV for p = 1.095—‘—’

T = 9106GeV for p = 10—6-6‘1'

Here we have used m, ¢® = 0938 GeV

Energy of pions is (1 +7|)mot:2 S0

_myc®
Vi-g?

1 _y4q o 5=______Vn(2+n)

ViF Lem

Here g = % of pion. Hence time dilation factor is 1 +7 and the distance traversed by the

(1+m) m(,c2 =

Hence

pion in its lifetime will be

cPr
BT = cTVn (2+1) = 150 metres
1-p°
on substituting the values of various quantities. (Note. The factor -‘/—:.—.}_——2- can be looked at
1-p

as a time dilation effect in the laboratory frame or as length contraction factor brought to the
other side in the proper frame of the pion).

From the previous problem ! = ctoVn(n+2)
where i = —-—1-'-5 , my is the rest mass of pions.
myc

1

substitution gives Tg = —————— = 2:63ns
CVn(2+m)
) Im,c
VT (T+2m, ¢ )
where we have used n = = 0716

1396
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6.294 Here m = L,_, = 1 so the life time of the pion in the laboratory frame is
mc

M=>0+"7 =27
The law of radioactive decay implies that the flux decrease by the factor.

J _ e m - VT . e-z/u,,\/n 2+m)

Jo
= exp (— mcl ] = 0221
WVT(T+2mc?)
6.295 Energy-momentum conservation implies
— —»
O = p.+py
m,,c2 =E,+E, or m,,cz-Ev =E,
But E, = c|py| = c|p,|. Thus
mict-2m c?c E;|+c2pﬁ = Eﬁ = czpi#mic‘
2_ 2
— - mn -m . 2
Hence clp,| —EZ g c
2 212
/ my—m
So T, = c2pi+mﬁc4—m,‘c2=v£—ﬁ4——;“—-+mi t-m,
mﬂ
= m:+m'2‘c2—m 3 = _—(m,,—mu i .2
2m, " 2m,
Substituting my ¢ = 1396 MeV
m, c* = 1057 MeV we get
T, = 412MeV
m? - m’
Also E, = =——%¢% = 298 MeV
2m,
6.296 We have
— —
O =Put+px @
my C2 = En + E’[
or (my - E) = E2
or m§c4—2mz}cf2E,, = E;‘:—Ez = c‘m,z,-c"mi
because (1) implies Ei - Ez,, = mi ct- mi c*

2.2 2
ms+m,—m
Hence E, = 2" "%
2 my
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2 2 2 2 2
ms +m, —m; ms -m,)" - m
and T,,=(———z = -m, 2=——-——-—( e ) 2
2 my 2 msy
Substitution gives T, = 1955 MeV

6.297 The reaction is
wr— et + v, +v,
The neutrinoes are massless. The positron will carry largest momentum if both neutriones
(ve&Vu) move in the same direction in the rest frame of the nuon. Then the final product
is effectively a two body system and we get from problem (295)

2
(mp - me) 2
—C

T
Substitution gives (T, )max = 52-35 MeV
6.298 By conservation of energy-momentum
Mc* = E, +E,
O = E; + }7,:
Then mic":Ei—E,’,cz- (Mcz-Ep)z-czﬁf,

= M2¢:4—2Mc2EI,+mgc4

This is a quadratic equation in M
2 {1}_ 2 2
M -2—M+my-m; =0
Cc

or using £, = m, ¢+ T and solving

2
(M—-E-.E)=-E-£—m2+m2
2 4 p ™+ Mx
c c
E E ,
Hence, M==24+V=2L_ iim
&2 & p T M

taking the positive sign. Thus

T \/ s T T
M-mp+c—2+ mn+?(2mp+?)

Substitution gives

MeV

C2

M = 11154

From the table of masses we identify the particle as a a particle
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6.299

6.300

> ~

B=RJ
>3 -> A A
74 BB 4By
_grz

See the diagram. By conservation of energy

Vmic4+c2p,2, = cpv+\/mﬁc4+p§c2+c2p3

2

or (Vmic4+c2p,2,-cp\,! -mic4+c2p,2,+c2p3
4 4

or mic -2cp, mic +c2p,2, = m;‘:c4

Hence the energy of the neutrino is

4
m c4—m2“ c
Ev =cp, =

2(m,c*+T)

- Vo2 by 22 2
on writing mict+Ppl =m.*+T

Substitution gives E, = 21:93 MeV

=Py d

xd A o
P=BJ+hK 1

1 Y
- MOy

~

$3

By energy conservation

4 4 4 2
\/m%c +c°pi = \ﬁn,z,c +c*pl +\/m,2,c +cpiec?pt
2

or (\/m%c4+czp§; —‘/mic4+c2pi ) =mct+cpl+c
2 4. 22, 24,22 \/24 22\/22 2 2
or mic+c pr+mict+c pi -2Vmict +c*ps Vmic + ¢ ps

2 2
= ”C2+C p,2‘+(_‘2p%
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6.302

or using the KE. of Z & n

Ty T,
m,%=m§+m,2,-2(mz+—2- m,‘+—§
c c

T T,
and m, = \/m% + m,2, -2 (mz + —-,j—) (m,, + -—;‘) = 0949 GezV
c c c
Here by conservation of momentum
Ex 0 E/
p,,=2xzcxcos2 /2
or cp,=CL cosg > € % -
n = “n .
2 % %
0
Thus  EZcos? 5 = E:- m2 ¢t E”/2
2
myc
or E, = Si: 0
2
2 0
and T, = mgc (cosec 2" 1)

substitution gives T, = m,c> = 135 MeV for 6 = 60°.

Al E my, S+ T x My ¢
so = = cosec =
Y 2 2 2

m, c?in this case (0 = 60°)

With particle masses standing for the names of the particles, the reaction is
m+M—>mi +my+ ...

391

On R.HS. let the energy momenta be (E;, cp;), (E5, cp,) etc. On the left the energy

momentum of the particle m is (E, ¢ ]7) and that of the other particle is (M ¢, T), where,

ofcourse, the usual relations
E2—6217'2 = m?ctetc
hold. From the conservation of energy momentum we see that
E+MEV-Ep” = CE)-Ech)
Left hand side is

mct+ Mt +2MCPE

We evaluate the RH.S. in the frame where £ p; = 0 (CM frame of the decay product).

Then RHS. = (ZE) =z Em;c?)?
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6.303

6.304

6.305

because all energies are +ve. Therefore we have the result

= mi)z—mz—M2 2
2 c

E 2M
or since E = mc*+ T, we see that T 2 T, where
1 o EmY-(nem) ,
th M
By momentum conservation
VEz—ch4 = 22—;‘—62c0s%
'Y \/E—m,c2 \/—_]'_-——->__._.
or @83 = E+m,c2 - T+2m¢c2 E
Substitution gives
0 =98-8°

The formula of problem 3.02 gives
£ L Emy-M 4
T TT2IM
when the projectile is a photon

(a) Fory+e —> e +e +e*

9 m? — m?
Ep= —c 2 = dm,c? = 204MeV
e
(b) For Y+p—p+n'n
(0.4 +2m,,)2—M2 , 4m.M, +4mi s m,2, 2
E, = —*£ £ = £ = 2|m,+—|c* = 3208 MeV
M, 2M, ** M,

() Forp+p—>p+p+p+p
16 m>-4m’
T2T, = —-2L—"c2 = 6m‘,c2 = 563 GeV
m, -
(b) Forp+p—>p+p+n°
(2mp+m,,e)2-4m‘2, 2

TZT,;,‘ >m
14

2

= [2m + 2= | = 0280 GeV
TR T 2m

(4
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6.306 (a) Here
. o xrm)’ - mgem) ,
th 2m,
Substitution gives T, = 0904 GeV
(mg +mp) = (mee + m,)*
(b) le = 2mp c
Substitution gives T, = 0-77 GeV.
6.307 From the Gell-Mann Nishijima formula
Y
Q= T+j
1. Y
we get O-2+2 or Y=-1
Also Y = B+S=> S = -2. Thus the particle is =° 0.

6.308

6.309

(1) The process n —>p + e + v, cannot occur as there are 2 more leptons (e, v,) on the
right comopared to zero on the left.

(2) The process x* — u* + €™ + €' is forbidden because this corresponds to a change of lepton
number by, (0 on the left - 1 on the right)

(3) The process n~ =y~ + v, is forbidden because p~, v, being both leptons AL = 2 hre.
P! M M

(4), (5), (6) are allowed (except that one must distinguish between muon neutrinoes and
electron neutrinoes). The correct names would be

4 pte —>n+v,
) w—re+v.+V,
©6) K —=>w+7,.

1) T+p—=>IT+K

0 0 -1 1
so AS = 0. allowed
(2 T+p—>IT+K

0 0 -1 1
so AS = -2. forbidden
(3 " +p—=>K +K'+n

0 0—>-1i1 0
so AS = 0, allowed.
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4 n+p—>A°+3*
0 0 -1 -1
so AS = -2, forbidden
) "+n—>w"+K +K
0 0—>-21 -1
S0 AS = -2. forbidden.
6) K+p—=>Q +K'K°
-1 0 -3 +1 +1
so AS = 0. allowed.

6310 (1) "> A°+a”
is forbidden by energy conservation. The mass difference

My My = 222V
[«

(The process 1 —> 2 + 3 will be allowed only if m, > my+m;.)

2 T +p—=>K+K
is disallowed by conservation of baryon number.

B K+n—=>Q +K +K°
is forbidden by conservation of charge

(4) n+p—=>Z"+A°
is forbidden by strangeness conservation.

B) " >pte +e
is forbidden by conservation of muon number (or lepton number).

6) p."-’e"+v¢+5u
is forbidden by the separate conservation of muon number as well as lepton number.

A gk o



